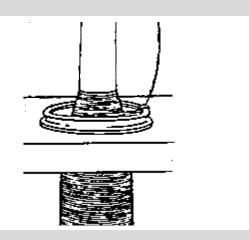


360° PER-FORMANCE MADE IN GERMANY.

Reiners + Fürst GmbH u. Co. KG

Leibnizstr 85, 41061 Mönchengladbach, Germany POB 10 13 40, 41013 Mönchengladbach, Germany



travellers@rundf.de

www.reinersfuerst.com

Productos "Made in Germany" de Reiners + Fürst – desde hace más de 75 años.

Recomendaciones tecnologicas capítulo 1

Aros y cursores para la hilatura de algodón

capítulo 2-3

Aros y cursores para la hilatura de fibra larga capítulo 4-7

R+F Rendimiento 360°

La marca Reiners + Fürst es sinónimo de calidad de anillos y cursadores de alta gama "made in Germany". Nuestra tradición como empresa familiar en su 3ª generación, es siempre centrarse en salvaguardar el proceso de hilatura de anillos.

En todo el mundo, nuestros clientes alcanzan excelentes resultados con nuestros productos y servicio. Nuestra meta personal es cumplir constantemente las máximas expectativas de ustedes.

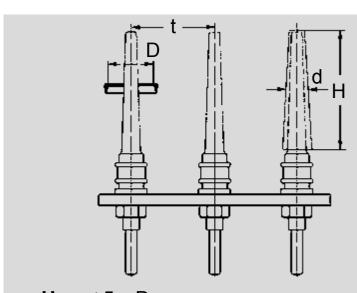
Dipl.-Kfm. Benjamin Reiners Presidente de Reiners + Fürst

Índice

1.	Recomendaciones tecnologicas	
1.1 1.2 1.3 1.4 1.5 1.6	Condiciones para un buen resultado en la hilandería Recomendaciones para aplicaciones especiales Influencias en la calidad del hilado por anillo y cursor Influencias en las roturas de hilo Eficacia de los sistemas anillo-cursor Generalidades	11 - 14 15 - 16 17 - 18 18 - 19 19 20 - 25
2.	Aros de pestaña	27
2.1 2.2 2.3 2.4 2.5 2.6 2.7	Calidades de los aros Recomendaciones de velocidad en aros Turbo Comparación entre aros Turbo Formas de los aros Modelos de los aros Selección del perfil para aros recubiertos Rodaje de los aros	27 - 28 28 - 29 29 30 31 32 32
3.	Cursores de pestaña	33
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Tratamiento superficial de los cursores Denominaciones de los cursores Tabla de comparación de los pesos de cursores Perfiles del alambre Recomendaciones de los cursores Resumen de fabricación Recomendaciones de velocidad Turbo aros Recomendaciones para la velocidad de los cursores Limpiadores de cursores Aparatos para colocar cursores	33 - 35 36 - 37 38 39 40 - 41 42 - 44 45 46 - 47 48 - 49 50 - 53
4.	Aros J	55

5.	Cursores J	61
5.1 5.2 5.3	Cursores J de acero Formas de cursores J Tabla de comparación de los pesos / números	61 62
5.4 5.5 5.6	de los cursores J de acero Cursores J de acero para aros J 9,1, J 11,1 y J 17,4 JCursores J de nylón Recomendaciones de uso	63 64 – 65 66 67 – 68
5.7	Útiles para colocar y sacar cursores J	69
6.	Aros HZ	71
6.1 6.2 6.3	Materiales de los aros Perfiles, diámetros y alturas de los anillos Lubricantes	71 72 – 74 75
6.4	Recomendaciones para los aceites de los diversos fabricantes de aceite	76
7.	Cursores HZ	77
7.1 7.2	Cursores HZ de acero Tabla de comparación de los pesos / números	77
7.3 7.4	de cursores HZ de acero Programa de producción de los cursores HZ Cursores de nylón para aros HZ	78 79 80
7.5 7.6 7.7	Gama de producción para cursores de nylón Recomendaciones de uso Útiles para colocar y sacar cursores HZ	81 – 87 88 – 93 94
8.	Recogedores de borrilla	95
8.1 8.2	Recogedor de borrilla SPIN CLEANER SC 1 Lista de repuestos	95 – 96 97

1. Recomendaciones tecnologicas


1.1 Condiciones para un buen resultado en la hilandería

La eficacia de la continua de anillos y de torzales está dada por el límite de carga máxima de los anillos y de los cursores seleccionados. Por la investigación y el desarrollo intensivos en la gama del cursor y del anillo, se ha aumentado substancialmente el límite de carga del sistema anillo-cursor.

Es bien sabido el hecho de que el desgaste del cursor no es solo dependiente des material. Además por el calor producido por el efecto fricción entre los cursores y el anillo, de manera tan rápida que el calentamiento local excede los 300 grados en las zonas del desgaste del cursor lo cual se deben evitar.

En orden de mantener tan pequeña como sea posible la carga del sistema anillo - cusor, debe ser garantizado que:

- El centro del anillo al huso sea perfecto
- El guía de hilo (cola de cochino) este bien centrado en relación al huso
- El centro del anillo BE de la bancada de anillos a los husos sea perfecta
- El cojinete del huso está bien y no se produce vibración del huso
- La relación de diámetro, longitud y los componentes de hilatura al diámetro del anillo sea correcta
- El antibalon en relación a la bancada de anillos debe también ser apropiado al diámetro del anillo disponible
- Los limpiadores deben estar correctamente ajustados de manera tal que quarden libremente a el cursor de borilla
- El clima de la sala (temperatura y humedad relativa del aire) para el hilado en cuestión debe de ser apropiado
- El aire de la sala debe de estar tan libre como sea posible de polvo y borilla ya que afecta negativamente al buen funcionamiento del cursor
- La bancada de anillos dede estar ajustada horizontalmente al huso alineado.

H $\leq 5 \times D$ BE $\sim D + 2 \text{ mm}$

EB $\sim 2 \times D$ EF $\sim 2 \times do$

Símbolos:

t = división entre husos

 $D = \emptyset$ interior del aro

 $d = \emptyset$ medio del tubo

do = \emptyset superior del tubo

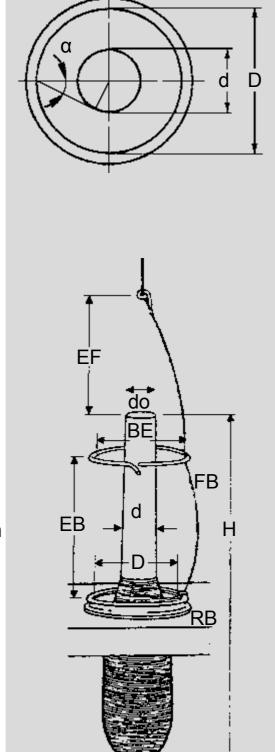
H = longitud del tubo

BE = anillo antibalón

EB = medida de ajuste aro / anillo antibalón

FB = balón de hilo

RB = platabanda


EF = medida de ajuste punta del tubo / guía-hilos (dimensiones en mm)

Valores de relación recomendados:

D = t - 25 mm

d:D en hilandería:

0.48 - 0.5 bien $\alpha 29^{\circ} - 30^{\circ}$ (no menor que 0.44 o bien $\alpha 26^{\circ}$)

Geometría del hilado:

Para un buen resultado en la hilanderia se recomienda guardar lo mas exato posible los valores en relacion a la geometria recomendada en la siguiente ilustración:

d:D: Con una pequeña relacion d: D se desarrolla una alta carga del cursor. El desgate del cursor asi como las roturas de hilo se incrementan.

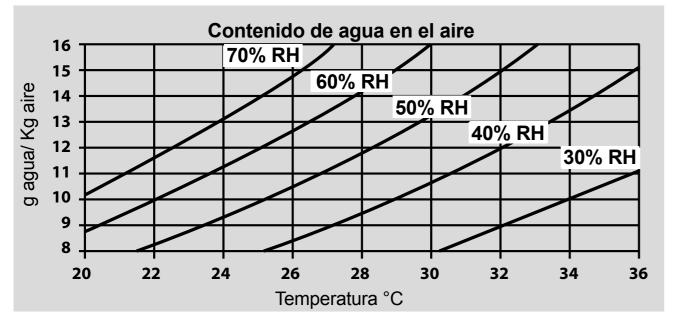
Con una grande relacion d: D es la cantidad de hilado en los cops pequeña.

H: Si se selecciona un un huso demasiado largo (e.g. H = 5.5 x D), afecta el balon del hilo en la punta de la canilla. Aparte de el alto numero de roturas de hilo se convierte también en peores registros de calidad del hilado

D y t: Con la opción del diametro del anillo \emptyset (D) debe la separcion entre los husos (t) ser considerada.

El diámetro máximo del anillo puede ser a lo máximo 25 milímetros más pequeño en comparación a la separacion entre husos.

Los cursores y antibalones tienen entonces la libertad movimiento necesaria. La postura del cursor, eliminación de roturas de hilo y cambios de cops trabajan libres de problemas.


BE: El balon del anillo debería ser de 2 – 3 milímetros más grande que el diámetro del anillo. Para un balon de anillo grande no hay descarga del balón del hilo posible.

Condiciones climáticas:

Para el logro de un buen resultado en la hilandería, las condiciones climáticas correctas de (humedad relativa, temperatura del aire) así como un aire en el ambiente limpio son de la importancia crucial. Por influencias que disturban debido a la contaminación para evitar deberia el sistemas de aire acondicionado presentar por lo menos 30 cambios de aire por hora. Recomendaciones generales para la humedad relativa. La humedad del aire demuestra la tabla siguiente.

Material	Temperatura [°C]	Humedad relativa [%]
Hilatura de fibra corta	28 - 32	38 - 45
Hilatura de fibra larga	23 - 28	60 - 65

El aire debe exhibir un contenido en agua de aproximadamente entre 11-12 g/kg en hilandería de fibra corta, en la hilandería de fibra larga el contenido de agua g/kg es de aproximadamente entre 13 – 14. En el diagrama se puede leer la temperatura y los gramos de agua por kilogramo de aire necesario para alcanzar el contenido de aire necesario.

Base: Presión 1013 mbar

Referencias generales al clima en la hilandería:

Los hilados compactos se convierten bajo las mismas condiciones climáticas como hilados estándares.

Cuando la inclinación de algodón tieda a ser mas pegajosa en componentes de hilar y durante la tendencia al enlapado debería seleccionarse mas seco el clima en la hilandería.

El comportamiento en el estiraje por clima demasiado seco y caliente influye positivamente. Temperaturas mas bajas pueden ayudar menos retrazos en el acondicionamiento para el estiraje. El grado de limpieza que el aire debe de tener para una buen funcionamiento y para las imperfecciones pequeñas de la gran importancia. Un alto contenido de polvo y contenido de la fibra en aire conduce particularmente con la producción de hilados finos a las rupturas y a los errores crecientes del hilado (cambios de condiciones en el clima acondicionado del salon).

Una contaminación atmosférica por los tipos mineral de polvo, como con medidas de la construcción, se convierte para los cursores y anillos en un desgaste rápido debido al trabajo extremadamente agresivo.

En la humectación del aire, el agua usada debe estar libre de las sales, de lo contrario se puede provocar una corrosión creciente en los anillos y los cursores.

1.2 Recomendaciones para aplicaciones especiales

Hilos compactos

Los hilos compactos son tipos del hilado con pilosidad extremadamente pequeña. Las condiciones de la fricción son aquí problemáticas, puesto que las fibras necesitadas para la lubricación faltan en gran parte. Con la producción de hilos compactos hay por lo tanto condiciones especiales que deben ser consideradas:

R+F recomienda para hilos compactos Flanch1 el perfil K 2 (véase también el capítulo 2.5), que fue desarrollado particularmente para este uso. Por la carencia de la fibra que lubrique es la fricción entre el anillo y cursor más alta para la producción de hilos compactos que con hilados convencionales. Poresta razón en la hilatura de hilos compactos un cursor más ligero (1-2 números menos pesado) se utiliza. Para atraer más cerca a la zona entre anillo y cursor a las pocas fibras para una mejor lubricación, se recomiendan cursores más ligeros y más cerrados.

En el hilado de hilos compactos deben seleccionarse condiciones climáticas más secas y más cálidas en comparación con los hilos convencionales.

Hilos core

La hilatura de los hilados core es en muchos casos muy problemática, particularmente con la producción de los hilados core duros. Aquí la relación de fibras de la capa a la base es muy pequeña. Con hilados suaves de la base y una relación más alta de fibras de la capa a la base las fibras son en estas condiciones no tan críticas.

Para trabajar hilos core duros frecuentemente sin anillo BE, se debe claramente utilizar cursores más pesados en comparación con los hilados convecionales (hasta 3 números más pesados). El número conveniente del cursor se debe determinar por tentativas. Con la producción de los hilados core recomendamos en principio el perfil normal. Los cursores deben tener particularmente con hilados duros core un paso cuidadoso del hilado. Por esta razón recomendamos el perfil rf, que tiene una sección redonda dentro de la gama del paso del hilado.

Hilados con efecto Flamé

Los hilados flamé tienen fluctuaciones de masa totalmente muy grandes, que se distribuyen sobre diversas longitudes del hilado debido a la especificación. Por esta razón la opción del peso del corredor es siempre un compromiso. En el principio orienta uno sí mismo con la opción del peso del cursor hacia el número medio del hilado. El peso del cursor se debe seleccionar con frecuencia claramente más pesadamente en lo referente a esta recomendación, para evitar demasiadas roturas de hilo durante los lugares gruesos.

Crucial para esto está la longitud del lugar grueso. Con los lugares gruesos, que tienen la longitud del antibalon o más de largo, el peso del cursor se presenta sobre la base el número del hilado en la gama del lugar grueso.

El número de revoluciones del huso en los hilados normales sirve para reducir las roturas del hilo dentro de la gama de los lugares finos. Los parámetros óptimos de hilado se deben determinar sobre tentativas.

La intensidad de los efectos del hilado puede ser utilizado para elegir el tipo de cursor. En los efectos fuertes se deben trabajar cursores claramente más altos.

Sinteticos y mezclas

Las fibras sinteticas son en sus propiedades muy diferentes. Por lo tanto deben estar siempre apegadas con el hilado de estas fibras las recomendaciones del fabricante de la fibra. Los sintéticos son con frecuencia sensibles a la fricción. Alrededor de la ocurrencia de los lugares de la fusión en el hilado que se deben evitar se utiliza un cursor mas alto. Un contacto del hilado con la corona del anillo se evita por este medio. Con las fibras muy sensibles se debe también renunciar al asentamiento del anillo BE. En este caso pesos siempre claramente más altos del cursor son para comenzar en lo referente a la recomendación normal.

Fibras teñidas y opacas contiene componentes generalmente muy agresivos. Allí también la película de las fibras que lubrica entre el anillo y la forma del cursor afectan estos componentes de la abrasion entre cursores y el anillo, para un servicio claramente más pequeño del cursor debe contar a menudo con tiempos de uso altos. También se debe reducir considerablemente el número de revoluciones del huso.

Frecuentemente un cursor con seccion redonda en el paso de las fibras traes mejores resultados (por ejemplo C 1 rf MT) comparado con cursores estándares.

Para la selección del cursor la tabla en páginas 40 da las recomendaciones para las diversas áreas del uso.

1.3 La influencia de la calidad del hilado por el anillo y el cursor

La calidad del hilado es afectada durante el proceso del hilado de anillo por muchos factores, por ello que también el anillo y los cursores tengan una influencia. Sin embargo la calidad de el pabilo, de la fibra que viene del proceso anterior no puede mejorar por el anillo y el cursor. El resultado de la hilatura, particularmente referente a la vellosidad, se puede afectar por la opción correcta del anillo y del cursor positivamente.

Vellosidad:

Particularmente con la vellosidad da una influencia por el anillo y el cursor. Aquí la condición del anillo y el centrado desempeñan un papel importante en la primera línea. Una superficie gastada del anillo conduce siempre a un coeficiente de vellosidad creciente.

Además de el centrado del anillo de importancia especial para una vellosidad pequeña, ésta tanto más altamente importante el número de revoluciones de huso correspondientes a un pequeño diámetro del anillo. La ilustración siguiente demuestra que con una excentricidad de 0.3 milímetros esa velocidad teórica del cursor varía fuertemente. De tal modo viene al vuelo ó vibración del cursor y por ella a una vellosidad creciente. Las condiciones representadas seran también dadas por la instrumentación usada.

También la elección correcta del cursor en el peso es de la importancia para buen resultado de la vellosidad. El peso del cursor da influencia fuerte a un determinado tamaño del balon, que conduce a la alta fricción y así a una vellosidad creciente. Con anillos gastados se convierten en anillo – cursor a fricción por la superficie dañada del anillo reducida. En este caso se sabe que un aumento del peso del corredor trae una mejora de vez en cuando. En principio los anillos se deben cambiar cuanto antes en este caso.

El indice de vellosidad óptimo alcanzado esta dado por la opción conveniente de la forma del cursor y la sección representativa del alambre del cursor.

Neps:

Los neps son las fluctuaciones totales extremadamente cortas, la mayoría bienen del pabilo o desde la cinta de cardas o estiradores. En algunos casos también borrilla, que puede convertirse en el cursor, puede conducir a un numero de neps creciente.

La razón de esto puede ser un cursor inadecuado o un cursor fuertemente gastado. Aquí una forma conveniente del cursor y/o un acortamiento del intervalo de cambio del cursor pueden traer mejoras. Con un numero de neps fuertemente creciente, que son causadas por borilla suelta, también el valor CV puede aumentar.

El coeficiente de variación del hilado (el CV%):

Esto es una medida para las fluctuaciones totales en el hilado. Las fluctuaciones totales son apenas influenceable por el anillo y el cursor. Al menos un alto numero de neps puede conducir también a un valor creciente del CV.

Lugares finos y lugares gruesos:

Estas imperfecciones describen fluctuaciones totales en el hilado dentro del radio de acción de centímetros y están por el lado del anillo y del cursor afectadas de manera insignificante.

Firmeza del hilado y elongación:

A menos que por el parametro del hilo(torsiones) y la materia prima el estiraje del hilado es afectado por la tensión del hilo en el proceso de hilado y con ello particularmente por el número revoluciones del huso. Para la firmeza sobretodo la orientación de las fibras que está en el cuerpo del hilado es de suma importancia. Esto se convierte considerablemente en el triángulo del hilado.

1.4 Influencia en las roturas de hilo

Roturas de hilo:

Las roturas del hilo afectan directamente para una buena eficacia de la máquina y tienen suma importancia.

Las roturas del hilo aparecen, si la tensión momentánea del hilo es más alta en el lugar del hilado cuya firmeza es más pequeña (punto débil) dentro de la gama del antibalon. Una buena uniformidad del hilado se afecta así siempre positivamente, allí con aumentado de lugares gruesos y de lugares finos la probabilidad de estos acontecimientos se incrementa.

El peso del cursor debe ser seleccionado siempre de una manera tal que por un lado la tensión del hilo sea tan pequeña que las roturas del hilo sean bajas y por otra parte no provocar disturbios por un balon (abombado) demasiado grande.

Roturas al cambio de cops:

Una condición para una numero bajo de roturas de hilo que comienza es una aplicación perfecta de la vuelta de la reserva (vuelta de plagado al cambio de cops).

Con roturas al cambio distinguimos entre la caída del hilado y las roturas genuinas del hilo.

Desmocamiento ó caidas de espira de hilo al cambio de cops:

Generalmente se puede reconocer claramente cuando un hilo se desenhebra, ya que en este caso se encuentran restos del hilo enrollado alrededor del guía hilo. Esto sucede porque al desenhebrarse, el hilo sigue recibiendo torsiones hasta que se rompe, sin embargo, este problema se puede resolver en primera instancia mediante la optimización del programa de la continua.

Los factores de la influencia son:

- Acercamiento del de los husos inmediatamente después del inicio del movimiento hacia abajo de la bancada
- El carril del anillo en caso de necesidad más adelante para comenzar el trabajo

Además también un cursor conveniente en la selección puede reducir este problema de las roturas del hilo.

Roturas de hilo al cambio de cops:

Normalmente alrededor del guía hilo no cuelgan restos de hilo.

En algunos casos puede venir a inclinar el cursor con el acercamiento. Aqui queda supendido la pata externa del cursor en la parte externa del anillo. La tensión del hilo es entonces al comenzar demasiado alta y los rasgones del hilo. El remedio puede ser una desaceleración más fuerte de los husos al parar la máquina (de tal modo el hilo es más flojo con el acercamiento) o una selección conveniente del cursor.

Además una estabilización rápida del antibalon para una tasa baja de la roturas del hilo como sea posible es extremadamente importante con el cambio.

1.5 Eficacia de los sistema anillo-cursor

El cursor corre a una velocidad de hasta 150 kilómetros por hora (42 m/s) en su vida util de aproximadamente 14 días. Los corredores de CeraDur pueden correr una distancia, que corresponde incluso a la distancia de la tierra a la luna (365.000 kilómetros) debido a su vida de servicio extremadamente alta.

Aquí se presiona con su energía centrífuga, que corresponde a un peso de hasta 500 gramos, al reborde del anillo. Este sistema se lubrica solamente con una película, que consiste en las fibras, en el material a hilar. El hilado de anillo soporta esta carga sobre una vida util que por varios años se ha desarrollado.

1.6 Generalidades (Tablas)

Ød	el aro	velocidad de huso en 1000/min											Ød	el aro																		
		11,5	12,0	12,5	13,0	13,5	14,0	14,5	15,0	15,5	16,0	16,5	17,0	17,5	18,0	1	8,5	19,0	19,5	20,0	20,5	21,0	21,5	22,0	22,5	23,0	23,5	24,0	24,5	25,0		
mm	pul-																														mm	pul-
mm	gada (aprox.)										Veloc	idad	de cui	rsor			•	en m/s	S													gada (aprox.)
		21,7	22,6	23,6	24,5	25,5	26,4	27,3	28,3	29,2	30,2	31,1	32,0	33,0	33,9	3	34,9	35,8	36,8	37,7	38,6	39,6	40,5	41,5	42,4	43,4	44,3	45,2	46,2	47,1		1 7/16
38	1 1/2	22,9	23,9	24,9	25,9	26,9	27,9	28,9	29,9	30,8	31,8	32,8	33,8	34,8	35,8	3	86,8	37,8	38,8	39,8	40,8	41,8	42,8	43,8	44,8	45,8	46,8	47,8	48,8	49,7	38	1 1/2
40	1 9/16	24,1	25,1	26,2	27,2	28,3	29,3	30,4	31,4	32,5	33,5	34,6	35,6	36,7	37,7	3	8,8	39,8	40,8	41,9	42,9	44,0	45,0	46,1	47,1	48,2	49,2	50,3	51,3	52,4	40	1 9/16
42	1 5/8	25,3	26,4	27,5	28,6	29,7	30,8	31,9	33,0	34,1	35,2	36,3	37,4	38,5	39,6	4	10,7	41,8	42,9	44,0	45,1	46,2	47,3	48,4	49,5	50,6	51,7	52,8	53,9	55,0	42	1 5/8
45	1 3/4	27,1	28,3	29,5	30,6	31,8	33,0	34,2	35,3	36,5	37,7	38,9	40,1	41,2	42,4	4	13,6	44,8	46,0	47,1	48,3	49,5	50,7	51,8	53,0	54,2	55,4	56,6	57,7	58,9	45	1 3/4
48	1 7/8	28,9	30,2	31,4	32,7	33,9	35,2	36,4	37,7	39,0	40,2	41,5	42,7	44,0	45,2	4	16,5	47,8	49,0	50,3	51,5	52,8	54,0	55,3	56,6	57,8	59,1	22,0	23,1	24,2	42	1 5/8
50	2	30,1	31,4	32,7	34,0	35,3	36,7	38,0	39,3	40,6	41,9	43,2	44,5	45,8	47,1	4	18,4	49,7	51,1	52,4	53,7	16,5	17,7	18,9	20,0	21,2	22,4	23,6	24,7	25,9	45	1 3/4
52	2 1/16	31,3	32,7	34,0	35,4	36,8	38,1	39,5	40,8	42,2	43,6	44,9	46,3	47,7	49,0	5	50,4	51,7	53,1	15,1	16,3	17,6	18,9	20,1	21,4	22,6	23,9	25,1	26,4	27,6	48	1 7/8
55	2 1/8	33,1	34,6	36,0	37,4	38,9	40,3	41,8	43,2	44,6	46,1	47,5	49,0	50,4	51,8	5	53,3			15,7	17,0	18,3	19,7	20,9	22,3	23,5	24,9	26,2	27,5	28,8	50	2
57	2 1/4	34,3	35,8	37,3	38,8	40,3	41,8	43,3	44,8	46,3	47,8	49,3	50,7	52,2						16,3	17,7	19,1	20,4	21,8	23,1	24,5	25,9	27,2	28,6	30,0	52	2 1/16
60	2 3/8	36,1	37,7	39,3	40,8	42,4	44,0	45,6	47,1	48,7	50,3	51,8								17,3	18,7	20,2	21,6	23,0	24,5	25,9	27,4	28,8	30,2	31,7	55	2 1/8
63	2 1/2	37,9	39,6	41,2	42,9	44,5	46,2	47,8	49,5	51,1									16,4	17,9	19,4	20,9	22,4	23,9	25,4	26,9	28,4	29,8	31,3	32,8	57	2 1/4
65	2 9/16	39,1	40,8	42,5	44,2	46,0	47,7	49,4										15,7	17,3	18,9	20,4	22,0	23,6	25,1	26,7	28,3	29,8	31,4	33,0	34,6	60	2 3/8
70	2 3/4	42,2	44,0	45,8	47,7	49,5										1	4,8	16,5	18,1	19,8	21,4	23,1	24,7	26,4	28,0	29,7	31,3	33,0	34,6	36,3	63	2 1/2
75	3	45,2	47,1	49,1											13,6	1	5,3	17,0	18,7	20,4	22,1	23,8	25,5	27,2	28,9	30,6	32,3	34,0	35,7	37,4	65	2 9/16
80	3 1/8	48,2												12,8	14,7	1	6,5	18,3	20,2	22,0	23,8	25,7	27,5	29,3	31,2	33,0	34,8	36,7	38,5	40,3	70	2 3/4
75	3												11,8	13,7	15,7	1	7,7	19,6	21,6	23,6	25,5	27,5	29,5	31,4	33,4	35,3	37,3	39,3	41,2	43,2	75	3
	3 1/8											11,7	12,6	14,7	16,8	1	8,9	20,9	23,0	25,1	27,2	29,3	31,4	33,5	35,6	37,7	39,8	41,9	44,0	46,1	80	3 1/8
90	3 1/2										12,3	13,2	14,1	16,5	18,9	2	21,2	23,6	25,9	28,3	30,6	33,0	35,3	37,7	40,1	42,4	44,8	47,1	49,5	51,8	90	3 1/2
100	4														20,9						34,0										100	4
115	4 1/2														24,1						39,1											4 1/2
120															25,1						40,8					56,6						4 3/4
	5 1/2														29,3						47,7											5 1/2
160															33,5						54,5											6 1/4
	7 1/8														37,7						61,3	66,0		اممنط	ad da	d our	or.					7 1/8
200															41,9				57,6				ve	iocida	ad de	Curs	SUI.					7 1/8
225															47,1				64,8				V,	=	Ring-		-	<u>κπ</u>				8 7/8
	9 7/8														52,4		58,9	65,5					_			0 x 1						9 7/8
	10 7/8																						V_L		veloc					n/s		10 7/8
				18,9																									11 7/8			
350	14			22,2																			•								350	14
		0,8	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4					4,0						6,5	7,0	7,5	8,0	8,5	9,0	9,5	10,0	10,5	11,0		
											Ve	ocida	d de l	nuso				en 100	00/mir	1												

Ne _c	Nm	tex	dtex
6,0	10,0	100,0	1000,0
7,0	12,0	84,0	840,0
8,3	14,0	72,0	720,0
9,5	16,0	64,0	640,0
10,0	17,0	60,0	600,0
10,6	18,0	56,0	560,0
12,0	20,0	50,0	500,0
13,0	22,0	46,0	460,0
14,0	24,0	42,0	420,0
16,5	28,0	36,0	360,0
18,0	30,0	34,0	340,0
19,0	32,0	32,0	320,0
20,0	34,0	30,0	300,0
24,0	40,0	25,0	250,0
26,0	44,0	23,0	230,0
28,0	48,0	21,0	210,0
30,0	50,0	20,0	200,0
36,0	60,0	17,0	170,0
40,0	70,0	14,0	140,0
48,0	80,0	12,5	125,0
50,0	85,0	12,0	120,0
60,0	100,0	10,0	100,0
70,0	120,0	8,3	83,0
100,0	170,0	5,8	58,0
105,0	180,0	5,5	55,0
120,0	200,0	5,0	50,0

1,0	4 4		
1,0	1,1	150	167
1,2	1,3	180	200
1,3	1,4	200	220
1,4	1,6	300	330
1,5	1,7	400	440
1,7	1,9	500	550
2,0	2,2	600	660
2,2	2,4	700	780
2,3	2,6	800	890
2,5	2,8	840	940
2,7	3,0	950	1000
3,0	3,3	1000	1100
3,2	3,6	1050	1160
3,5	3,9	1100	1220
3,7	4,2	1260	1400
4,0	4,4	1300	1450
5	5,6	1500	1670
6	6,7	1650	1840
8	8,9	2000	2200
10	11	3000	3300
12	13	4000	4400
15	17	5000	5600
20	22	6000	6700
30	33	7000	7800
40	44	8000	9000
50	56	9000	10000
60	67	10000	11000
70	78	12500	14000
80	90	15000	17000
90	100	20000	22000
100	110	30000	33000
120	133	50000	56000

Denominaciones de la fineza de los números de hilo Fórmulas de conversión

Unidad		Unidad	d de Título ı	requerida	
de Título conocida	tex	dtex	den	Nm	Ne _c (Algodon)
tex	tex	tex x 10	tex x 9	1000 tex	<u>590</u> tex
dtex	dtex x 0,1	dtex	dtex x 0,9	<u>10000</u> dtex	<u>5900</u> dtex
den	den x 0,11	den x 1,11	den	<u>9000</u> den	<u>5315</u> den
Nm	<u>1000</u> Nm	<u>10000</u> Nm	<u>9000</u> Nm	Nm	Nm x 0,59
Ne _c	<u>590</u> Ne _c	5900 Ne _c	<u>5315</u> Ne _c	Ne _c x 1,693	Ne _c
Ne _κ	<u>886</u> Ne _k	8860 Ne _k	7672 Ne _k	Ne _K x 1,129	Ne _K x 0,667
Ne _w	<u>1940</u> Ne _w	<u>19400</u> Ne _w	<u>17440</u> Ne _w	Ne _w x 0,516	Ne _w x 0,305
Ne _L	<u>1653</u> Ne _L	<u>16530</u> Ne _L	<u>14880</u> Ne _L	Ne _L x 0,605	Ne _L x 0,357

Torsión de hilo

La torsión del hilo es determinada principalmente de la aplicación. Además cada tipo de fibra tiene sus valores de torsión especiales, dependiendo de la calidad, la estructura, la fineza y la longitud de las fibras.

La calculación de la torsión en la práctica se realiza principalmente según la fórmula de Köchlin T/m = α m x \sqrt{Nm} .

Explicación de las expresiones

= torsión = coeficiente de torsión

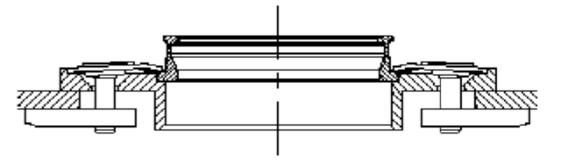
Fórmulas

a)
$$T/m = \frac{\text{velocidad de huso (1/min)}}{\text{velocidad de entraga (m/min)}} = \frac{\text{nspi}}{L}$$

b)
$$T/m = \frac{\alpha t e x}{\sqrt{t e x}}$$
 $T/m = \alpha m x \sqrt{Nm}$
 $T/" = \alpha e x \sqrt{Ne}_{c}$

Fórmulas de conversión

$$T/m = \frac{\alpha m}{\sqrt{\frac{\text{tex}}{1000}}}$$
 $T/m = T/" \times 39,4$


$$T/" = T/m \times 0,0254$$

$$\alpha \tan x = T/m \times \sqrt{\tan x}$$
 $\alpha \tan x = \pi \times 31,6$ $\alpha \tan x = \pi \times 958$

$$\alpha m = \frac{T/m}{\sqrt{Nm}}$$
 $\alpha m = T/m \times \sqrt{\frac{tex}{1000}}$ $\alpha m = \frac{\alpha tex}{31,6}$ $\alpha m = \alpha e \times 30,3$

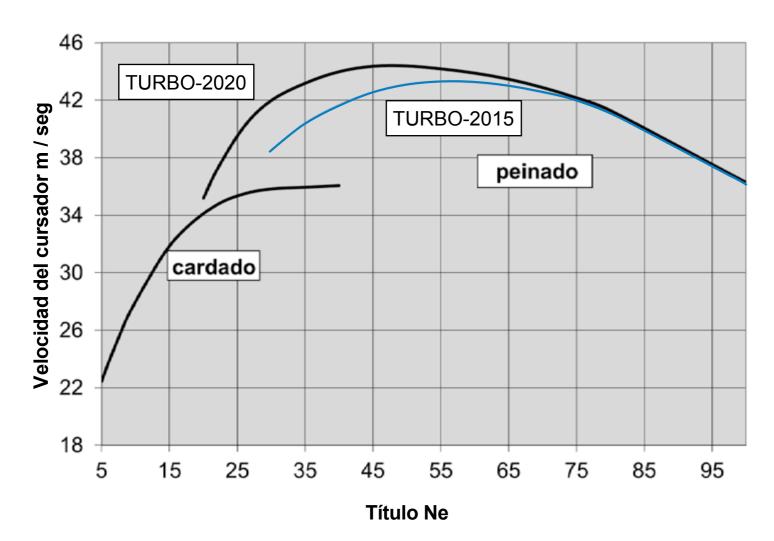
$$\alpha e = \frac{T/"}{\sqrt{Ne_C}}$$
 $\alpha e = \alpha m \times 0.033$ $\alpha e = \alpha tex \times 0.00104$

2. Aros de pestaña

2.1 Calidades de aros

R+F ofrece aros de distintas calidades para la amplia variedad de condiciones de hilado y tipos de hilo diferente.

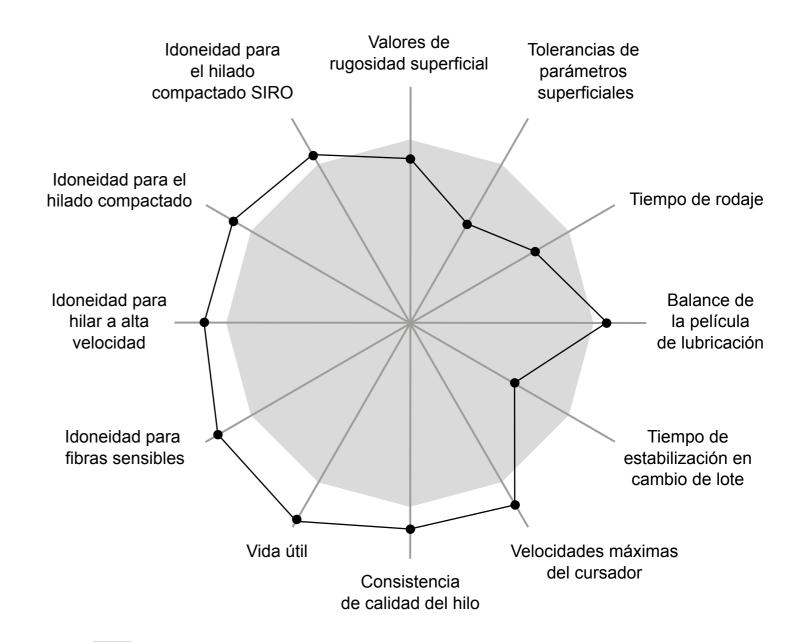
La selección de la calidad adecuada del aro dependerá de las características de la fibra procesada, de la aplicación tecnológica, así como de las velocidades de huso deseadas y de la vida útil que se pretenda alcanzar.


Mientras que los aros Champion sin recubrimiento proporcionan buenos resultados de hilado en condiciones de hilatura moderadas, se recomienda utilizar aros con recubrimiento, como los aros CeraDur y Turbo, para condiciones más exigentes.

- Champion el campeón entre los aros básicos. La característica que lo diferencia entre los aros sin recubrimiento es su gran resistencia al desgaste. El material de partida seleccionado, que cuenta con una textura bien equilibrada tras el proceso de endurecido, ofrece la base ideal para la formación de la película de lubricante en la pista del cursor. Los aros Champion se utilizan con éxito, como solución económica en aplicaciones estándar donde las velocidades del cursor no superan los 36 m/s.
- CeraDur la capa de alta tecnología con valores de dureza de 2000 HV es la base perfecta para todo tipo de cursores. Combinados con los cursores CeraDur de R+F, permiten lograr valores máximos de vida útil. Esta combinación es la solución perfecta para los fabricantes de hilos que trabajen principalmente con lotes de producción extremadamente largos. Las pérdidas de producción debidas a paradas de la máquina para cambiar el cursor son insignificantes.
- **Turbo** el superventas, es mucho más que un aro cromado. Los aros Turbo se producen mediante tecnologías de fabricación desarrolladas exclusivamente por R+F. Estos aros están sometidos a un proceso continuo de desarrollo y mejora para poder suministrar las mejores soluciones a nuestros clientes en todo momento.

Su estructura superficial única y su precisión de fabricación extremadamente elevada aseguran un rendimiento muy estable de los aros Turbo, a lo que hay que añadir unos valores de eficiencia máximos de la máquina, aunque los aros de pestaña normales requieran una reducción de la velocidad del huso.

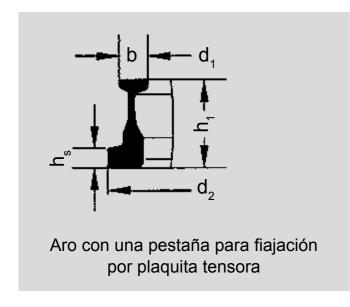
Además, los clientes se beneficiarán de unos parámetros de calidad de los hilos producidos extremadamente buenos y consistentes, incluso en condiciones de hilado cada vez más exigentes. Con los aros Turbo, los clientes adquieren un producto que no solo ofrece una mayor vida útil, sino también una excelente relación precio-rendimiento.


2.2 Recomendaciones de velocidad en aros Turbo

Para las condiciones de hilado en la página 28 se obtienen los siguientes beneficios, a continuación se detallan las características recomendadas:

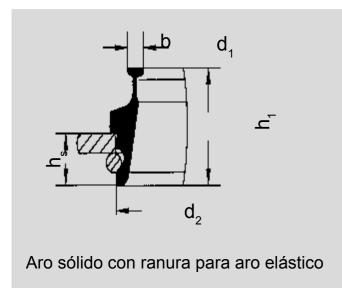
- Mejores parámetros posibles de calidad del hilo con muy alta consistencia
- Mayor eficiencia posible de la máquina
- Efecto positivo sobre el consumo de energía
- Una vida útil más larga

2.3 Comparación entre aros Turbo

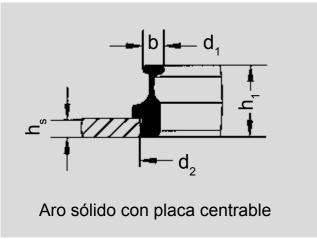


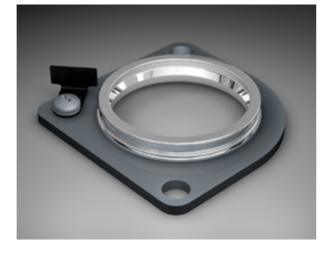
TURBO-2015

TURBO-2020


2.4 Formas de los aros

2.4.1 Forma BEF





2.4.2 Forma A

2.5 Modelos de aros

2.5.1 Varius A para el sistema de husos centrables

Aro de alto rendimiento introducido a presión en adaptador de aluminio para la sujeción con anillo de fijación.

2.5.2 Modelo Varius P para sistemas con aro centrable

a) Aro de alto rendimiento para la introducción a presión en un adaptador de aluminio

b) Aro de alto rendimiento introducido a presión en placa de centraje R+F

2.6 Selección del perfil para aros recubiertos

R+F ofrece diferentes perfiles de anillo para una variedad de aplicaciones

Pestaña- numero	Diámetro*	Utilización		
pestaña ½ = 2,6mm	36 – 40	K 2	Sin restricción	Para hilos super finos (Ne100) y más finos
		K 2	Sin restricción	Lo mejor para altas velocidades, hilo compacto y fibras sintéticas
pestaña 1 = 3,2mm	36 – 48	Elíptico**	Hilos convencionales de algodón y sus mezclas	Reduce valores de pilosidad
		Normal	Sin restricción	Core duros e hilos sintéticos muy delicados
pestaña 2 = 4,1mm	45 – 60	Normal	Sin restricción	

2.7 Rodaje de los aros

* otros diámetros sobre pedido ** velocidades de cursor hasta 40m/seg.

Debido a las tecnologías ultramodernas para la producción de aros R+F para hilatura el acabado, exactitud y la calidad superficial de los aros fueron mejorados claramente. Por esta razón el producto del aro fue acortado hoy claramente. Un pulido en los aros por el cursor no es más necesario, sólo la estructura de una fibra uniforme que lubrica una película en la superficie sustentadora del cursor del aro requiere un corto tiempo de marcha. Para esto en el caso de todas las fuentes del aro de R+F es válido las recomendaciones de cada producto para cada caso que se proporcionan.

Conocimientos generales para el rodaje del aro:

Un buen curso de la superficie del flansh puede contribuir substancialmente a una larga vida del aro y con uso de cursores más pequeños hace posible que se obtengan valores favorables de rupturas del hilo

- Los cambios de la forma del cursor, de la calidad del hilado y del número del hilado se deben evitar.
- La limpieza de la continua de aros antes de producir no es más necesario. Bajo ninguna circunstancias los aros con un solvente antes de que el start-up pueda ser limpiado
- Los cursores se cambian después de posibilidad en cada caso al inicio del cops pasado.
- La temperatura y la humedad relativa constantes del aire trabajan muy positivamente con el producto.
- En el caso de que la máquina este equipada de un mecanismo del hilado flamé no debe durante el rodaje del aro ser utilizado. Debido a que por la diferencia de lugares finos y l lugares gruesos de las causa diferencias de tensión de hilo y esto evita una formación uniforme de la pelicula de fibra que lubrica.
- Los hilados core durante el rodaje del aro no deberian de producirse.

3. Cursores de pestaña

Aro de pestaña con cursor en posición de marcha

3.1 Tratamiento superficiales de los cursores

El comportamiento de marcha se determina esencialmente por la formación de la película lubrificante de fibras lo cual influye en el comportamiento de deslizamiento entre aro de hilar y cursor. Aparte de una forma del arco de cursor exactamente adaptada al aro y a la calidad del hilo, tiene importancia decisiva un tratamiento adicional de la superficie. Con una selección óptima es posible alcanzar buenos resultados de marcha y duraciones de los cursores requeridos. Gracias al trabajo de investigación y desarrollo están disponibles las siguientes variantes para los diferentes casos de aplicación.

BlackSpeed

El cursor BlackSpeed se utiliza de forma preferente en aros de calidad estándar (como el aro R+F Champion). El cursor BlackSpeed lleva un recubrimiento de óxido de color negro brillante logrado mediante un proceso termoquímico especial. Esta superficie garantiza una adherencia excelente de la película lubricante de la fibra, con lo que se logra una mejor protección contra el desgaste. Al mismo tiempo, con la capa de óxido negra se mejora notablemente la disipación térmica del cursor y se logra una resistencia considerablemente más alta contra la corrosión. Además de ello, la capa es altamente insensible a los efectos perjudiciales de sustancias agresivas de las fibras, avivajes y engrasados, así como a las influencias adversas del clima ambiental. El cursor BlackSpeed es altamente resistente y duradero.

Avus

El cursor Avus está fabricado con un material base especial de alta aleación y, por lo tanto, de alta resistencia. Para ello, R+F emplea un proceso adaptado especialmente a este material base mediante el cual éste se provee de componentes que inhiben el desgaste. Gracias a ello, el cursor

adquiere una superficie lisa que permite la formación extremadamente rápida de una superficie de contacto ancha y óptima con el aro. Este hecho garantiza una disipación térmica excelente. A su vez se logra una extraordinaria adherencia de la película lubricante formada. Los componentes inhibidores del desgaste del material del cursor contrarrestan la abrasión natural del material, con lo cual el cursor Avus logra una vida útil muy elevada.

El cursor Avus es especialmente ventajoso en el hilado de hilos de algodón y de material fibroso similar al algodón, que apenas aportan fibras para la formación de la película lubricante de la fibra. El cursor Avus presenta resultados especialmente buenos a una velocidad de hilatura alta o muy alta, en hilos compactos y en hilos de torsión fuerte, finos y muy finos.

SuperSpeed

El cursor SuperSpeed de R+F se refina galvánicamente con un acabado adicional de desarrollo especial. Esta capa destaca por un coeficiente de aspereza mínimo y garantiza un paso del hilo especialmente cuidadoso. La resistencia del paso del hilo se mantiene siempre constante en un perfil de alambre dado, con lo cual se asegura una calidad constante del hilo. El acabado especial es, además, resistente al desgaste y permite una vida útil más larga a más altas velocidades en comparación con cursores sin acabado. De este modo, el cursor SuperSpeed de R+F destaca como multitalento por la constancia en la alta calidad del hilo, una alta productividad y una larga vida útil.

Vector

El cursor Vector dispone de un acabado especial con revestimiento que garantiza las propiedades de funcionamiento de emergencia del cursor en condiciones extremas. Si la formación de la película lubricante se ve brevemente perturbada por influencias externas, se suministra la proporción necesaria de lubricante al aro mediante el revestimiento de apoyo. De este modo no sólo se evitarán roturas del hilo, sino que también se protegerá la superficie del aro frente a daños. Gracias al bajo coeficiente de fricción del acabado Vector se logra una vida útil del cursor notablemente más larga en condiciones de hilatura normales. El cursor Vector es indicado para el procesamiento de todos los materiales. Según la aplicación, ya sea para materiales difíciles de procesar o para lograr una vida útil más prolongada, el cursor Vector resulta óptimo para hilos de grosor medio de Ne 20 hasta hilos finos de hasta Ne 60.

DiaDur[®]

La alta calidad del revestimiento DiaDur esta caracterizado por una superficie unica, resistente al desgaste y excelente capacidad de deslizamiento. Su revestimiento premium evita un prematuro desgaste del cursor, particularmente cuando se procesan fibras agresivas. Los coeficientes de fricción permanecen constantemente bajos y garantizan valores estables en la calidad del hilo durante su largo tiempo de vida, asi como una permanente protección de la superficie del aro.

Incluso en caso de altas velocidades del huso, el proceso del hilado se lleva a cabo con bajos valores de roturas.

Esto se traduce en un considerable aumento de la eficiencia en las continuas de hilar, especialmente en combinación con largos tiempos de vida de los cursores DiaDur.

CeraDur®

El cursor con acabado CeraDur de R+F permite una vida útil extrema. R+F ha desarrollado el aro CeraDur y el cursor CeraDur junto con empresas asociadas e institutos especializados en la investigación del desgaste. Nuestro objetivo común ha sido lograr una superficie con un grado de desgaste extremadamente reducido y optimizada para el sistema de aro y cursor. Gracias al procedimiento por difusión del acabado CeraDur se mejoran notablemente las propiedades del cursor. Con ello, el cursor alcanza una dureza extrema de la superficie superior a 1.100 HV, así como el coeficiente de fricción más bajo.

Con esta combinación de aro CeraDur y cursor CeraDur se logra en la hilandería el efecto útil máximo posible con las condiciones de hilatura correspondientes. En la práctica, el cursor alcanza una vida útil de hasta 20 semanas. En los aros Turbo también se pueden emplear cursores CeraDur si se proporciona una buena película lubricante. El cursor CeraDur es idóneo para hilos de grosor medio de Ne 20 hasta hilos finos de Ne 80.

En la etiqueta de la caja del cursor se indican todos los datos importantes del cursor. Además de los datos relativos al modelo del cursor, la cantidad de llenado y el número de artículo de R+F, constan también los números de control correspondientes al lote para poder hacer un rastreo inequívoco del producto.

para perfil normal y perfil K2 hr semi redondo El número la pestaña y perfil C1 Perfil del alambre

EMT Forma del cursor

El número del cursor

ISO 45

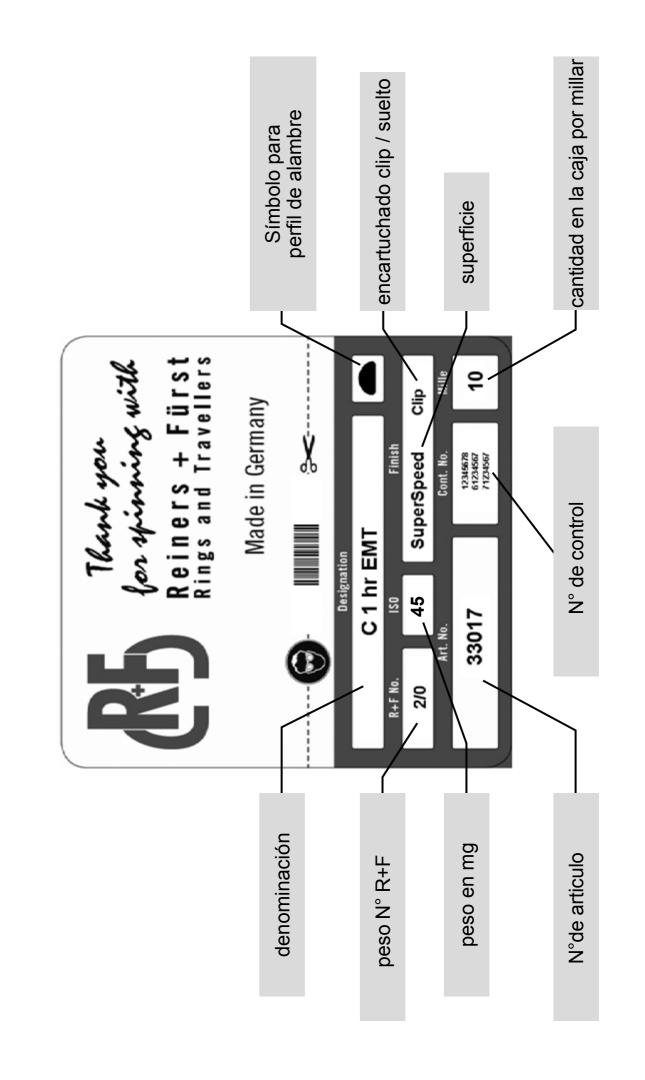
para R+F N° 2/0

Tratamiento de la superficie Presentación

SuperSpeed peso 45 mg

N°de articulo N° de control

hasta 3 números indicados uno debajo del otro CLIP para cursores encartuchados 33017

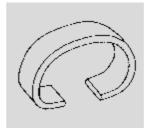

por millar

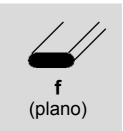
Ejemplo: 33017

Cantidad

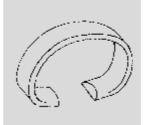
C1 hr EMT No. 2/0 ISO 45 SuperSpeed CLIP

La etiqueta original de R+F está adherida de tal forma que la caja del cursor queda protegida frente a una apertura involuntaria.


RF

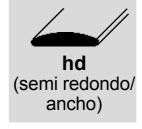

3.3 Tabla de comparación de los pesos de cursores

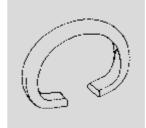
Cusor N°	R+F N° ISO	Bräcker N° ISO	Carter N° ISO	Kanai* N° ISO	Cusor N°	R+F N° ISO	Bräcker N° ISO	Carter N° ISO	Kanai* N° ISO
30/0	4,0				1	60	63	63	62,2
29/0	4,5				2	71	71	71	73,6
28/0	5,0	6,3	6,3	6,7	3	80	80	80	81,0
27/0	5,6			7,3	4	85	90	90	87,7
26/0	6,0	7,1	7,1	8,1	5	95	95	95	95,3
25/0	6,3			8,9	6	106	100	100	108,8
24/0	7,1	8,0	8,0	9,5	7	112	112	112	121,8
23/0	7,5			10,4	8	125	125	125	135,9
22/0	8,0	9,0	9,0	10,9	9	140	140	140	154,4
21/0	8,5			11,6	10	160	160	160	174,8
20/0	9,0	10,0	10,0	12,3	11	180	180	180	199,0
19/0	10,0	11,2	11,2	13,0	12	200	200	200	219,8
18/0	11,2	12,5	12,5	13,7	13	224	224	224	237,8
17/0	11,8	13,2	13,2	14,5	14	236	250	250	258,7
16/0	13,2	14,0	14,0	15,4	15	250	265	265	277,1
15/0	14,0	15,0	15,0	16,6	16	265	280	280	298,0
14/0	15,0	16,0	16,0	18,3	17	280	300	300	
13/0	16,0	17,0	17,0	20,0	18	300	315	315	
12/0	18,0	18,0	18,0	21,6	19	315	335	335	
11/0	19,0	20,0	20,0	23,4	20	325	355	355	
10/0	20,0	22,4	22,4	25,0	21				
9/0	22,4	23,6	23,6	26,8	22	355	375	375	
8/0	23,6	25,0	25,0	28,5	23				
7/0	26,5	28,0	28,0	30,2	24	385	400	400	
6/0	30,0	31,5	31,5	32,2	25				
5/0	31,5	35,5	35,5	35,1	26	415	425	425	
4/0	35,5	40	40	38,3	27				
3/0	40	45	45	42,2	28	450	450	450	
2/0	45	50	50	48,3	29				
1/0	50	56	56	54,6	30	475	475		


^{*} Pesos de los tipos principales (N° ISO = peso del cursor en mg)

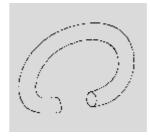
3.4 Perfiles de alambre

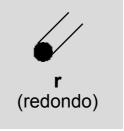
Este perfil está seleccionado frecuentemente para hilados de algodón y viscosa cuando se precisa una pilosidad lo menos posible. Adecuado solamente para velocidades medias del huso.


Adecuado para elevados rendimientos con hilados de algodón, hilados sintéticos y mezclas. Perfil preferido para torsión de tricot.



Adecuado para máximos rendimientos con hilados de algodón peinado. La pilosidad y los valores de roturas de hilo quedan reducidos al mínimo.




Adecuado para titulos finos con todos tipos de fibas. Particularmente recomendado para reducir pilosidad con hilos para tejer.

Perfiles preferidos para hilados Core así como para algunos acrílicos o sintéticos. El pasaje de hilo es de alambre redondo, mientras que el pie del cursor, en el área de apoyo del aro, tiene el perfil plano o semi redondo, capaz de soportar más carga.

Adecuado para algunos hilados sintéticos y delicados o para fibras cortadas largas en la gama de títulos gruesos. La velocidad posible es esencialmente más baja en comparación con los otros perfiles de alambre.

3.5 Recomendaciones de los cursores

Cursores recomendados, aplicaciones y perfiles de aro

Perfil Normal												X	X	X	Х
Perfil EL					Х	Х	Х		Х	Х	Х				Х
Perfil K2			Х*	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Aplicaciòn	Ne	Nm	EL ½ hd*	EL 1 hf	EL 1 hd EM	EL 1 hd W	EL 1 hr W	EL 1 hd TW	EL 1 f HW	EL 1 hr HW	HEL1 hr EMT	C 1 hd CS	C 1 hd CL	C 1 hd CM	C 1 hd W
Algodòn cardado	< 16	< 27					Х			Х					
	> 16	> 27			Х					Х					Х
Algodòn peinado urdimbre	< 24	< 40					Х		Х						Х
	> 24	> 40	Х	Х		Х			Х						Х
Algodòn peinado tricot	< 30	< 50			Х				Х						Х
	> 30	> 50	Х		Х				Х						Х
Hilo compacto	< 30	< 50												Х	X
	> 30	> 50	Х	Х				Х				Х	Х	Х	Х
Hilo SIRO	< 30	< 50					Х								Х
	> 30	> 50				Х									Х
SIRO compacto	< 30	< 50					Х	Х						Х	Х
	> 30	> 50				Х		Х						X	Χ
Hilos mezclados con algodòn	< 30	< 50					Х				Х				
	> 30	> 50			Х						Х				
Hilos mélange	< 30	< 50													
	> 30	> 50													
100% polièster	< 30	< 50									Х				
	> 30	> 50									Х				
100% viscosa	< 30	< 50							Х		Х				
	> 30								Х						Χ
Polièster / Viscosa	< 30														
	> 30	> 50													
100% acrilico	< 30									Х					
	> 30	> 50								Х					
Hilados con efectos flamè	< 16									Х					
	> 16									Х					
Hilados core duros	< 16														
	> 16	> 27								_					
Hilados core suaves		< 27								X					
	> 16	> 27								Χ					

X: mas recomendado

*): Para aros de pestaña ½

Perfil Normal			X	Х	X	X	X	X	X	x	x	X	X	Х	X
Perfil EL					Х										
Perfil K2			Х	Х	Х	Х	Х	Х	Х	Х					
Aplicaciòn	Ne	Nm	C 1 hd TW	C 1 hr TW	C 1 hf KM	C 1 hd EMT	C 1 hr EMT	C 1 hr MT	C 1 rf MT	C 1 hr MTW	C 2 f	C 2 hr T	C 2 hr MT	C 2 rf MT	C 2 hr MTW
Algodòn cardado	< 16	< 27			Χ	Χ	Χ	Χ		Χ	Х		Х		Χ
	> 16	> 27		Х	Х	Х						Х			
Algodòn peinado urdimbre	< 24	< 40		Х	Χ		Х			Х			Х		
	> 24	> 40	Χ		Χ	Χ						Х			
Algodòn peinado tricot	< 30	< 50		Х	Х		Х			Х			Х		
	> 30	> 50	Χ		Χ	Х	Х					X			
Hilo compacto	< 30	< 50										Х			
	> 30	> 50													
Hilo SIRO	< 30	< 50		Х								Х			
	> 30	> 50	Χ	Χ											
SIRO compacto	< 30	< 50		Х											
	> 30	> 50													
Hilos mezclados con algodòn	< 30	< 50		Х	Х	Х	Х								
	> 30	> 50	Х		Х	Х	Х					Х			
Hilos mélange	< 30	< 50						Х					Х		
	> 30	> 50				Х							Х		
100% polièster	< 30	< 50					Х	Х					Х		
	> 30	> 50					Х					Х			
100% viscosa	< 30	< 50		Х			Х				X		X		
	> 30	> 50	Х		Х	Х	Х					Х			
Polièster / Viscosa	< 30	< 50					Х	Х					Х		
1222/ W	> 30	> 50			Х										
100% acrilico	< 30	< 50					X	X	X				X	X	
	> 30	> 50					Х	X	Х	\ \			X	Χ	\ <u>/</u>
Hilados con efectos flamè	< 16	< 27						X		Х			X		X
I liladas saus duns	> 16	> 27						Х	V			X	Χ	V	
Hilados core duros	< 16	< 27							X					X	
I liledes som succession	> 16	> 27						V	Х					Χ	
Hilados core suaves	< 16	< 27						X							
	> 16	> 27						Х							

3.6 Resumen de fabricación

Programa de producción de los cursores EL 1

	estaña	Denominación	Cı	ursor		N° ISO				
N°.	Ancho	de los cursores	Forma	Sección	N° R+F	(mg/pieza)				
1/2	2,6mm	EL 1/2 hd	C		22/0 – 4/0	8 - 35,5				
		EL 1 hf T	С	•	20/0 - 7/0	9 – 26,5				
		EL 1 f	С		7/0 - 4/0 8/0KN*	26,5 11,7 - 35,5 25,9				
		EL 1 hf			17/0 – 1/0	11,8 – 50				
		EL 1 hd TWW	C		19/0 – 3/0	11,2 – 40				
		EL 1 hd TW	С		18/0 – 1/0	11,2 – 50				
		EL 1 hr TW			10/0 – 3	20 – 80				
1		EL 1 hd EM			15/0 – 4	14 – 85				
•	3,2mm	EL 1 hd W	C		5/0 – 6	31,5 – 106				
		EL 1 hr W			9/0 – 8	22,4 – 125				
		EL 1 f HW			10/0 – 6	20 – 106				
		EL 1 hd HW	C		12/0 – 3	16 – 80				
		EL 1 hr HW			10/0 – 12	20 – 200				
		HEL 1 hd EMT	С		4/0 – 1	35,5 - 60				
		HEL 1 hr EMT)		7/0 – 9	26,5 – 140				

Manufacturing Range of C 1 Travellers

Р	estaña	Denominación	Cı	ursor		N° ISO
N°.	Ancho	de los cursores	Forma Sección		N° R+F	(mg/pieza)
		C 1 hd CS	0		20/0 - 7/0	9 - 26,5
4	2 0mm	C 1 hd CL	С		15/0 – 4/0	14 – 35,5
1	3,2mm	C 1 hd CM	С		13/0 – 3/0	16 – 40
		C 1 hd W	С	1	10/0 – 3	20 - 80

Programa de producción de los cursores C1

Р	estaña	Denominación	Cı	ursor		N° ISO
N°.	Ancho	de los cursores	Forma	Sección	N° R+F	(mg/pieza)
		C 1 f	\circ		3/0 – 4	40 – 85
		C 1 hd TW			10/0 – 7	20 – 112
		C 1 hr TW	C		12/0 – 10	18 – 160
		C 1 hf KM		•	11/0KN* – 9KN*	23,4 - 154,4
		C 1 hd KM	С		12/0KN* – 12KN*	21,6 – 219,8
1	0.0	C 1 hd EMT			8/0 – 13	23,6 – 224
•	3,2mm	C 1 hr EMT	C		7/0 – 8	26,5 – 125
		C 1 hd MT			8/0 – 13	23,6 – 224
		C 1 hr MT	\circ		9/0 – 14	22,4 – 236
		C 1 rf MT			7/0 – 9	26,5 – 140
		C 1 hd KS			10/0KN* – 11KN*	26,5 – 140
		C 1 hr MTW	()		1 – 24	50 – 385

Programa de producción de los cursores C2

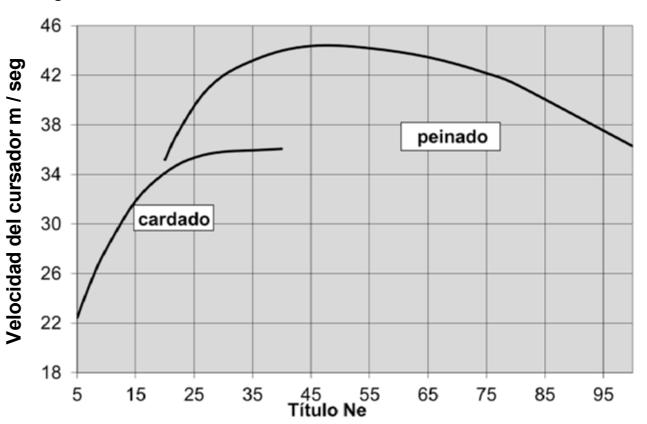
Р	estaña	 Denominación	Cı	ursor		N° ISO
N°	Ancho	de los cursores	Forma	Sección	N° R+F	(mg/pieza)
		C 2 f			2 - 34	71 – 730
		C 2 r	()	•	16 – 38	265 – 575
		C 2 hd T			2/0 – 6	45 – 106
2	4,0/ 4,1mm	C 2 hr T	()		4/0 – 15	35,5 – 250
		C 2 hr MT			8/0 – 32	23,6 – 500
		C 2 rf MT			1/0 – 24	50 – 358
		C 2 hr MTW	\mathcal{O}		2 - 14	71 – 236

^{*} Numeración distinta. Véase el peso en la tabla comparativa Pesos de los cursores en la columna Kanai

Cursores principales R+F

			-		-																				
20/0																									
18/0								19/0																	
17/0																									
16/0																									
15/0																									
14/0																									
13/0																									
12/0																									
11/0																									
10/0																									
9/0																									
8/0																									
7/0																									
6/0																									
5/0																									
4/0																									
3/0																									
2/0																									
1/0																									
1																									
_ 2																									
3																									
4																									
_ 5																									
-6 -7																									
7																									
8																									
9																									
10																									
11 12																									
12																									
13																									
14																									
15																								No18	_
16							L																	Z	_
	_		Σ	>	>	≥	HEL 1 hr EMT	S		 		>	>	<u></u>	ြ	ΗM	Ţ	 -	_		×		_		≥
	EL 1/2 hd	Ъf	EL 1 hd EM	EL 1 hd W	EL 1 hd TW	EL 1 hr HW	1 hr	C 1 hd CS	C 1 hd CL	C 1 hd CM	C 1 hd W	C 1 hd TW	C 1 hr TW	C 1 hf KM	C 1 hd KS	C 1 hd EMT	C 1 hr EMT	C 1 hd MT	C 1 hr MT	C 1 rf MT	C 1 hr MTW	T T	C 2 hr MT	C 2 rf MT	C 2 hr MTW
	:L 1/	EL 1 hf	<u> </u>	<u>ا</u> ـا	<u>ا</u> ـا	<u>ا۔</u> ا	山山	, 1 h	1 L	, 1 h	, 1 h	1 h	1 h	, 1 h	1 h	, 1 h	1 L	1 L	1 1	11 1	7 1 h	C2hrT) 2 h	22) 2 h
	ш	ш	ш	ш	ш	ш	1 —	J	J	J	J	J	0	J	J	J	U	J	U	J	J	J	0	0	0

3.7 Recomendaciones para la velocidad de los cursores


Para la delimitación de la velocidad del cursores diferentes factores desempeñan un papel:

Dentro de la gama áspera del titulo del hilado, con el empleo de cursores pesados, incrementa muy fuertemente la fricción debido a la energía centrífuga muy alta del cursores. Las investigaciones demostraron que con alta fuerza centrífuga una estructura uniforme de la fibra que lubrica la película no está más asegurada. Por esta razón se redujo dentro de estas gamas las velocidades del cursor. A altas velocidades se cuenta con desgaste claramente creciente del cursor y posiblemente desgaste impetuoso del aro.

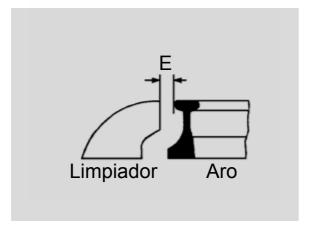
Con titulos de hilados de medios hasta finos jugan sobre todo las fronteras tecnólogisas de hilatura un papel. Si la tensión media del hilado es mayor al 20% de la media de la firmeza del hilado debido a las fluctuaciones y a las diferencias de la firmeza que se presentan en la tensión de la hilatura aumentaran las rotuturas del hilo, de manera tal que siempre que en un punto de la tensión del hilo de con un punto débil en el hilado coinsidan.

Puesto que la tensión del hilo es más grande al principio del llenado del cops debido al balon más grande, el empleo de un programa de hilado se recomienda, con el cual el número de revoluciones del huso se reduzca con el inicio del llenado del Kop. De tal modo la productividad de la continua de aro se puede aumentar claramente.

Se recomienda un número máximo de revoluciones del huso en el centro de la gama fina de titulos de hilo.

RF

3.8 Recomendaciones para el número de los cursores


Las recomendaciones del número del cursor indicadas aquí refieren a las máquinas de hilar modernas, que funcionan en la gama superior de velocidad. Los valores de referencia, refieren a las experiencias en muchas fábricas textiles. Los números del cursor pueden desviarse detalladamente dependiendo de condiciones de la hilatura de estas recomendaciones sin embargo no fuertemente. Particularmente en los siguientes casos se debe contar también con desviaciones más grandes:

- Para hilos compactos debido a la lubricación más pequeña es recomendado de usar 1-2 numeros mas ligero.
- Con la producción de hilados sensibles sin el aro antibalón (por ejemplo hilados core) se deben utilizar parcialmente 2-3 números más pesados.
- Con la producción de hilados finos en aros grandes en viejas máquinas de hilar con frecuencia se trabaja con cursores claramente más pesados (hasta 3 números y más)
- Los cursores con perfil plano (por ejemplo EL 1 f) llegan debido a otras condiciones de la instalación para 1-2 numeros mas ligeros.
- Para aros gastados se debe utilizar hasta 3 numeros mas pesados del cursor para estabilizar las caidas del balon.
- Fundamentalmente se aplica: para velocidad alta, cursores mas ligeros y viseversa.

Ne	Nm	tex	N° R+F	ISO (mg)
5	8	118	16 – 20	265 – 325
6	10	100	14 – 18	236 - 300
7	12	85	12 – 15	200 – 250
8	14	72	11 – 13	180 – 224
10	17	59	8 – 10	125 – 160
12	20	50	6 – 7	106 – 112
14	24	42	4 – 5	85 – 95
16	27	36	2 – 3	71 – 80
18	30	34	1 – 2	60 – 71
20	34	30	1/0 - 1	50 - 60
24	40	25	2/0 – 1/0	45 – 50
26	44	23	3/0 – 2/0	40 – 45
28	48	21	4/0 – 3/0	35,5 – 40
30	50	20	4/0 - 3/0	35,5 – 40
32	54	18	5/0 - 4/0	31,5 – 35,5
36	60	17	6/0 - 5/0	30 – 31,5
40	68	15	7/0 — 6/0	26,5 - 30
48	80	13	8/0 - 7/0	23,6 - 26,5
50	85	12	9/0 – 8/0	22,4 - 23,6
54	90	11	9/0 – 8/0	22,4 - 23,6
60	100	10	10/0 — 9/0	20 – 22,4
70	120	8,3	12/0 – 11/0	18 – 19
80	135	7,4	15/0 – 13/0	14 – 16
90	150	6,7	17/0 – 15/0	11,8 – 14
100	170	6,0	18/0 – 16/0	11,2 – 13,2
105	180	5,6	19/0 – 17/0	10 – 11,8
112	190	5,3	20/0 – 18/0	9 – 11,2
130	220	4,6	21/0 – 19/0	8,5 - 10

3.9 Limpiadores de cursores

En la hilatura de fibra corta el principio con que trabaja el limpiador del cursor, es guardar libremente el cursor de acumulaciones de borrilla. Con falta y/o mal ajustado, demasiado lejano del limpiador, el cursor se puede bloquear con borilla. Así los valores de la rotura del hilo se incrementan y se empeora la calidad del hilado.

En las siguientes tablas se indican en mm las medidas de ajuste recomendadas.

Ajuste para limpiadores de cursores con cursores de pestaña 1

	Νι	ímero c	le curs	Número de cursor					
Tipo de cursor	20/0 – 5/0	4/0-3	4-7	8 – 16	Tipo de cursor	20/0 – 5/0	4/0-3	4-7	8 – 16
EL ½ hd	1,3	1,4	-	-	C 1 hd CS	1,5	-	-	-
EL 1 hf T		1,9	-	-	C 1 hd CL	1,5	1,6	-	-
EL 1 f	1,5	1,9	2,0	2,6	C 1 hd CM	1,7	2,2	-	-
EL 1 hf		1,8	1,9	-	C 1 hd W	1,7	2,0	-	-
EL 1 hd TWW	1,5	1,6	-	-	C 1 hd TW	4.7	1,9	-	-
EL 1 hd TW	1,7	2,2	-	-	C 1 hr TW	1,7	2,0	2,2	2,6
EL 1 hd EM	1,7	2,0	-	-	C 1 hf KM	17	2,3	2,5	-
EL 1 hr W	17	2,2	2,4	-	C 1 hd KM	1,7			2,6
EL 1 hd W	1,7	2,0	2,2	-	C 1 hd EMT	4.0		2,0	2,1
EL 1 f HW		2,1	2,3	2,8	C 1 hr EMT	1,6	1,8	2,1	2,2
EL 1 hd HW	1,7	2,2	2,4	2,9	C 1 hd MT	17	2.0	2,2	2,4
EL 1 hr HW		2,0	2,4	2,9	C 1 hr MT	1,7	2,0	2,3	2,6
HEL 1 hd EMT	1.5	17	-	-	C 1 hd KS	1,6	2,2	2,5	2,6
HEL 1 hr EMT	1,5	1,7	2,0	2,2	C 1 hr MTW	-	3,2	3,5	3,7
C 1 f	1,6	2,0	2,2	2,6	C 1 rf MT	2,3	2,7	2,9	3,1
C1fT	1,6	2,0	2,1	2,2					

Ajuste para limpiadores de cursores con cursores de pestaña 2

Traveller Number									
Tipo de cursor	8/0 - 5/0	4/0 – 3	4 – 7	8 – 16	16 – 30				
C 2 hd T	2,0	2,1	2,2	2,8	3,2				
C 2 hr T	2,0	۷,۱	۷,۷	2,0	٥,٧				
C 2 hr MT	2,0	2.2	2.4	2 0					
C 2 hf MT	2,0	2,3	2,4	2,8	3,0				
C 2 rf MT	2,5	2,7	2,8	3,1	3,5				
C 2 hr MTW	-	2,5	2,6	2,9	3,4				

	Traveller Number							
Tipo de cursor	8/0 - 4/0	4/0 - 3	4 – 7	8 – 10	11 – 16	17 – 30		
C 2 f	-	1,9	2,5	2,6	2,9	3,2		
C 2 r	-	2,6	2,8	3,4	4,1	4,3		

Las ventajas con el uso de cursores encartuchados:

- Menos perdida de tiempo por paros de máquina al cambio de cops
- de tal modo una eficiencia más alta de la máquina
- Pocas perdidas por el cambio del cursor
- Empleo de menor cantidad de personal para el cambio del cursor
- Uso fácil

Aparatos para colocar cursores

LW 12-20 SIMPLEX con mecanismo suplementario para el ajuste exacto

del ancho del cursor, especialmente adécuado para

la gama de números más ligeros

tablas páginas 51 – 53

para diámetros pequeños, con distancias estrechas

entre husos y con la instalación de Ringdata

LW 13-2 especialmente adecuado para la gama de números

más pesados tablas páginas 51 – 53

LW 13-20 con mecanismo suplementario para el ajuste exacto

del ancho del cursor, adecuado para todos los números y formas de cursores encartuchados

(excepto cursores con perfil "rf")

tablas páginas 51 – 53

LW 13-3 especialmente para cursores con perfil "rf" y "rhr"

tabla página 52

Útiles para montar y sacar cursores

Sacador para pestaña 1	LA FI. 1	(artículo no. 60153)
Sacador para pestaña 2	LA FI. 2	(artículo no. 60152)
Gancho para cursores pestaña 1 y 2	LH	(artículo no. 70768)

Varillas para cursores elípticos de pestaña 1

		cartuchados aparatos	
Denominación de los cursores	LW 12 – 20 N° R+F	LW 13 – 2/ 13 – 20 N° R+F	Denominación de la varilla
EL 1 hf T	20/0 - 1/0		T 38
EL 1 f	20/0 - 1/0	14/0 — 1/0	E 39 (E 40)
"	1 – 4	1 – 4	E 41 (E 42)
EL 1 hf	20/0 – 1	15/0 – 1	E 40 (E 41)
EL 1 hd	16/0 – 11/0	16/0 – 11/0	E 40 (E 41)
m	10/0 – 3	10/0 – 3	E 41 (E 42)
EL 1 hd TWW	16/0 — 6/0	16/0 – 6/0	T 38 (T 39)
EL 1 hd TW	12/0 – 1/0	12/0 - 1/0	E 41 (E 42)
EL 1 hd W	14/0 — 1/0	14/0 — 1/0	E 42 (E 43)
EL 1 hr W	9/0 - 1/0 (-8)	8/0 - 1/0 (-8)	E 42 (E 43)
"	1 – 8	1 – 8	E 44 (E 45)
EL 1 hd EM	12/0 – 3	12/0 – 1	E 42 (E 43)
EL 1 f HW	12/0 - 1/0 (-7)	12/0 - 1/0 (-7)	EH 42 (EH 43)
n	1 – 7	1 - 7 (-16)	EH 44 (EH 45)
"		8 – 16	EH 45
EL 1 hd HW	13/0 - 1/0 (-4)	13/0 - 1/0 (-4)	EH 42 (EH 43)
"	1 – 4	1 – 4	EH 44 (EH 45)
EL 1 hr HW	12/0 - 1/0 (-7)	12/0 - 1/0 (-7)	EH 42 (EH 43)
"	1 – 7	1 - 7 (-17)	EH 44 (EH 45)
11		8 – 17	EH 45
HEL 1 hd EMT	8/0 – 2	8/0 – 2	E 41 (E 42)
HEL 1 hr EMT	12/0 - 4 (-8)	12/0 – 8	E 41 (E 42)

53

Varillas para cursores forma C de pestaña 1

	Cursores en para los		
Denominación de los cursores	LW 12 – 20 N° R+F	LW 13 – 2/ 13 – 20 N° R+F	Denominación de la varilla
C 1 f		8/0 - 1/0	40
"		1 - 7(-10)	42 (43)
п		8 – 14	43 (45)
C1fT	18/0 – 1/0	18/0 – 1/0	T 40 (T 42)
п	1 – 4	1 – 6	T 42
C 1 hd CS	20/0 - 7/0	20/0 - 7/0	E 39
C 1 hd CL	15/0 – 4/0	15/0 – 4/0	T 38 (T 39)
C 1 hd CM	13/0 – 3/0	13/0 – 3/0	E 41 (E 42)
C 1 hd W	10/0 – 3	10/0 – 3	E 42 (E 43)
C 1 hd TW	14/0 – 2	14/0 – 2	TW 42 (TW 43)
C 1 hr TW	18/0 – 7	15/0 - 7 (-12)	TW 42 (TW 43)
C 1 hr EM	14/0 – 3	14/0 – 3	E 42 (E 43)
C 1 hd KM	16/0KN – 1/0KN	14/0KN - 1/0KN	E 42 (E 43)
"	1KN – 8KN	1KN – 10KN	E 45
C 1 hf KM	12/0KN – 1/0KN	12/0KN - 1/0KN	E 42 (E 43)
"	1KN – 4KN	1KN – 4KN	E 45
C 1 hd KS	16/0KN – 1/0KN	16/0KN – 1/0KN	EMT 41
"	1KN – 8KN	1KN – 10KN	EMT 42
C 1 hd EMT	18/0 – 7	14/0 – 10	EMT 41 (EMT 42)
C 1 hr EMT	13/0 – 7	13/0 – 8	EMT 41 (EMT 42)
C 1 hd MT	5/0 – 7	5/0 – 10	MT 43 (MT 44)
C 1 hr MT	11/0 – 7	11/0 - 11 (-14)	MT 43 (MT 44)
"		12 – 14	MT 44 (MT 45)
C 1 hr MTW		1 – 22	MT 54

Varillas para el aparato LW 13 – 3

para cursores con perfil de alambre "rf" y "rhr"

Denominación de los cursores	Cursores encartuchados para los aparatos LW 13 – 3 N° R+F.	Denominación de la varilla
EL 1 rf HWW	3/0 – 8	EH 48 (EH 49)
C 1 rf MT	7/0 – 10	MT 43 (MT 44)
C 2 rhr TM	9/0 – 7	T 50 (T 51)
C 2 rf MT	7/0 – 12	MT 50 (MT 51)

Varillas para cursores elípticos y cursores forma C de pestaña 2

	Cursores en para los		
Denominación de los cursores	LW 12 – 20 N° R+F	LW 13 – 2/ 13 – 20 N° R+F	Denominación de la varilla
C 2 f	_	5/0 - 3	50 (51)
п	_	4 - 10	54 (56)
п	-	11 – 20	56 (58)
п	_	21 – 32	60
C 2 r	_	1 – 7	52 (51)
п	_	8 – 10	54 (56)
"	_	11 – 20	60
C 2 hd T	9/0 – 7	9/0 — 7	T 50 (T 51)
"	_	8 – 10	T 54
C 2 hr T	10/0 - 7	10/0 – 7	T 50 (T 51)
"	_	8 – 24	T 54
C 2 hr MT	_	9/0 – 7	MT 50 (MT 49)
"	_	8 - 32	MT 50 (MT 51)
C 2 hf MT	-	3 - 14	MT 50 (MT 51)
C 2 hr MTW	_	1/0 – 30	MT 54

4. Aros J

4.1 Materiales de los aros

Aros J de acero

Los aros J de acero se fabrican particularmente de acero de alta calidad, ésos por un tratamiento termal conveniente reciben una alta resistencia de la abrasión. Los tratamientos superficiales especiales prestan una suavidad óptima y el paralelismo al aro en las superficies de contacto del cursor, de tal modo que un período de adaptación corto es posible.

Para los hilos peinados la lubricación con aceite los aros cónicos J llega a ser primordial en todas las observaciones prácticas. Garantizando allí los mejores logros con menos pérdida de la uniformidad del hilado.

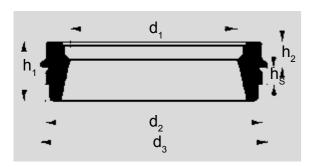
Los aros cónicos J se pueden adaptar óptimamente a las diversas condiciones de funcionamiento en la hilatura peinada. Se convierten en:

- en varias alturas del aro (9.1 milímetros o 11.1 milímetros y/o 17.4 milímetros para los hilados del flamé)
- generalmente a todos los diámetros
- con los sistemas de fijación deseado

Los aros de acero tienen varios lazos de mecha flamé que alimentan con lubricante las áreas en contacto con el cursor. El número de los puntos de lubricación depende del diámetro del aro y de la cantidad de aceite requerida para una lubricación óptima.

Debido a la sensibilidad mayor del material sinterizado y costes de mantenimiento claramente más altos siguen siendo aros J sinterizado poco usados. Los aros sinterizado tienen ventajas, si:

- las altas demandas de la calidad con respecto a uniformidad y la limpieza del hilado se ponen (con el proceso de los hilados brillantes, contaminación-sensibles) o
- los cursores de nylon se emplean.


Dentro de la gama del cursor de acero pesado los números deben ser empleado poniendo atención a la delimitación, de modo que los daños del aro de acero sinterizado sean evitados por sobrecarga.

El número aplicable más pesado del cursor de acero:

Denominación	N° R+F	N° Iso
J 9,1	R+F Nr. 24	ISO 90
J 11,1	R+F Nr. 22	ISO 132
J 17,4	R+F Nr. 18	ISO 355

Aros de acero sinterizados necesitan un cuidado continuo en el largo plazo, de tal modo buenos del funcionamiento son posibles. Además una limpieza y la impregnación con un aceite especial recomendado son necesario

4.2 Diámetros y alturas de los aros, sistemas de lubricación

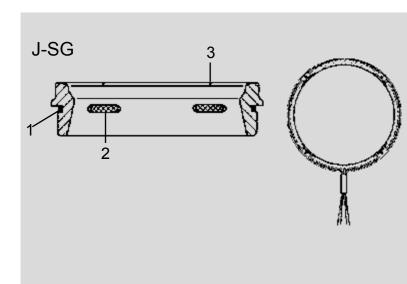
d₁: Ø interior del aro en mm d₂: Ø del asiento en mm

d₂: Ø exterior (Ø del talón) en mm

altura del aro en mm

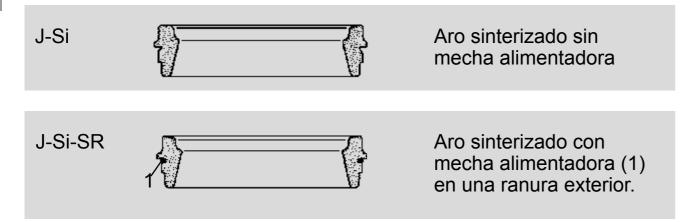
 n_2 : altura encima platabanda en mm

altura del asiento en mm


Alturas de aro h ₁									
Ø interior del aro d ₁	9,1mm	11,1mm	17,4	Diferencias límites (tolerancias del Ø del asiento) con d ₂					
	Ø	odel asiento d		en mm					
42	49	-	-	0					
45	52	52	-	- 0,2					
48	55	55	-						
50	57	57	-						
52	59	59	-						
55	62	62	-						
57	64	64	-	0 - 0,25					
60	67	67	71	- 0,25					
65	-	72	76						
70	-	77	81						
75	-	82	86						
80	-	87	91						
90	-	97	101						
100	-	107	111						
110	-	117	121	0 - 0,32					
115	-	-	126	<u> </u>					
120	-	-	131						
127	-	-	138						
140	-	-	151	0					
160	-	-	171	- 0,40					
180	-	-	191	0 0,55					

Diámetros de los aros d₁, d₂ y **alturas** h₁ mayormente según norma. La producción de otros diámetros para aros, que no se mencionan en la tabla, se realiza sobre demanda.

Diámetro del asiento d₂: Dependiendo del sistema de engrase, fijación del aro, centrado y intercambiabilidad, pueden preverse diámetros mayores para el asiento, que los mencionados en la tabla. Otras diferencias límites de d2 sobre demanda. Las diferencias límites no valen en caso de una ovalización eventual.


Sistemas de lubricación

Aros J de acero tienen puntos de engrase en la pista interna y adicionalmente puntos de engrase con mecha en la pista superior.

J-SG es el sistema de lubricación preferido para las alturas de aro 9,1 + 11,1 mm: La mecha de lubricación (1) se encuentra en la ranura exterior y se pasa varias veces por los orificios como lazo de mecha (2) hacia la guía interior del aro. Los puntos de lubricación adicionales con mecha (3) abastecen la vía de deslizamiento superior

Aros J de acero sinterizado son suministrados bañados en aceite especial. Un reengrase o sea una imbibición es necesaria a intervalos regulados.

4.3 Lubricantes Aros J de acero

Sistemas de lubricación J-SG

lazos de mecha

Altura del aro	Grupo de viscosidad ISO *									
Denominación y	Aceites para cu	rsores de acero	Aceites para cursores de nylón							
medidas	aceite sint.	aceite mineral	aceite sint.	aceite mineral						
J 9,1 (9,1 mm) J 11,1 (11,1 mm)	ISO VG 32	ISO VG 32 (event. 46)	ISO VG 32 (event. 46)	ISO VG 32 (event. 46)						
J 17,4 (17,4 mm) J 17,7 (17,7 mm)	ISO VG 32	ISO VG 32 (event. 46)	ISO VG 32 (event. 46)	ISO VG 46						

^{*}En la práctica son admisibles viscosidades de aceite ligeramente diferentes

Aros J de acero sintero

Sistemas de lubricación J-Si J-Si-SR sin lubricación con lubricación por medio de mecha

Altura del aro	Grupo de viscosidad ISO *								
Denominación y	Aceites para cu	rsores de acero	Aceites para cursores de nylón						
medidas			aceite sint.	aceite mineral					
J 9,1 (9,1 mm) J 11,1 (11,1 mm)	ISO VG 15 (event. 22)	ISO VG 32	ISO VG 22 (event. 32)	ISO VG 32 (event. 46)					
J 17,4 (17,4 mm)	ISO VG 15 (event. 22)	ISO VG 32 (event. 46)	ISO VG 32 (event. 46)	ISO VG 46 (event. 68)					

^{*} En la práctica son admisibles viscosidades de aceite ligeramente diferentes

Las recomendaciones del aceite de los diversos productores de aceite se encuentran en el página 76 Recomendaciones de aceitado para aros tipo HZ.

5. Cursores J

5.1 Cursores J de acero

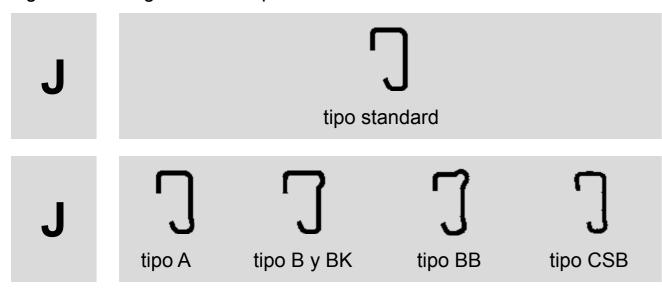
Tratamientos superficiales:

Los cursors J son producidos de diferentes formas con un tratamiento superficial " Super Pulido

Ejemplos:

23400	J 9,1 r Acero SuperPolish suelto	Nr. 26	N° ISO 60
23152	J 11.1 r Acero SuperPolish suelto	Nr. 24	N° ISO. 90
23254	J 11.1 r type B Acero SuperPolish suelto	Nr. 24	N° ISO 90
227222	J 11.1 r type B Acero SuperPolish Clip encartuchado	Nr. 22	N° ISO 132

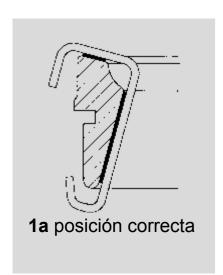
Explicación:


Para los cursores de acero tipo J se han tomado las denominaciones recomendadas según la norma. Un dato adicional del tipo completa la denominación; p. ej.:

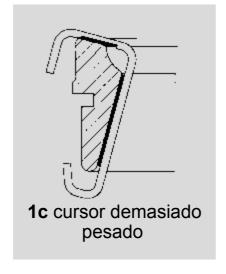
Forma	Altura	Perfil de	Tipo del	 Material	Cui	rsor-	Tratamento de
cursor	del aro	alambre	cursor	Wateriai	N°	N° ISO	superficie
J	9,1	r		Acero	26	60	suelto
J	11,1	r		Acero	24	90	suelto
J	11,1	r	В	Acero	24	90	suelto
J	11,1	r	В	Acero	22	132	Clip encartuchado

Perfil de alambre:

Si la forma de un cursor difiere de la del modelo standard, son posibles las siguientes designaciones suplementarias:



Posición del cursor durante la marcha


Posición correcta (Fig. 1a) Normalmente el cursor se apoya en el lado cónico interior del aro así como en la parte superior. En estos lugares se encuentra el mayor desgaste. En la parte inferior del aro el apoyo del cursor se realiza en pocas ocasiones y por lo tanto el desgaste es mínimo.

Cursor demasiado liviano (Fig. 1b) Por la tensión del hilo el cursor es jalado hacia arriba y se apoya en la parte inferior y interior del aro. El desgaste en la parte inferior aumenta considerablemente. Como consecuencia la vida útil disminuye y las rupturas de hilo aumentan.

Cursor demasiado pesado (Fig. 1c) El cursor se desgasta muy rápido en la parte superior. Como consecuencia la vida útil disminuye considerablemente y las rupturas de hilo aumentan.

5.3 Tabla de comparación de los pesos / números de los cursores J de acero

Cursor N°	R+F N° ISO	Bräcker N° ISO	Kanai N° ISO (tipo SBA)	Carter J 11,1 N°	Cursor N°	R+F N° ISO	Bräcker N° ISO	Kanai N° ISO (tipo SBA)	Carter J 11,1 N°
10	1800	1800	850		24,5	85	80	97,5	22
11	1600	1600	650	10	25	75	71	90	23
11,5	1400				25,5	67	67	82,5	23 1/2
12	1320	1250	580	11	26	60	63	75	24
12,5	1180		545		26,5	53	56	71,5	24 1/4
13	1060	1000	510	12	27	50	50	68	24 1/2
13,5	950		475		27,5	45	45	64,5	25
14	850	900	440	13	28	40	40	61	25 1/2
14,5	800		405		28,5	35,5	35,5	57,5	26
15	710	710	370	14	29	33,5	31,5	54	
15,5	630		335		29,5	31,5	30	50,5	
16	560	560	300	15	30	30	28	47	27
16,5	500	500	285		30,5	28		43,5	
17	450	450	270	16	31	26,5	25	40	28
17,5	400	400	255		31,5	25		38,2	
18	355	355	240	17	32	23,6	22,4	36	
18,5	300	280	225	17 3/4	32,5			34	
19	250	250	210	18	33	22,4		32	29
19,5	224	224	195	18 1/2	33,5			30	
20	180	180	180	19	34	21,2	20	28	
20,5	160	170	165	19 1/4	34,5			26	
21	150	160	150	19 1/2	35	20		24	30
21,5	140	140	143	19 3/4	35,5			22	
22	132	125	135	20	36	18	18	20	
22,5	118	118	128	20 1/4	37	16	16	18	31
23	112	112	120	20 1/2	38	15	14	16	
23,5	100	100	113	21	39	13,2	12,5		
24	90	90	105	21 1/2	40	11,8	11,2		

(N° ISO = peso del cursor en mg)

Altura de	el aro		
Denomi- nación	mm	Denominación de los cursores	sistema de numeración (pesos ver pág. 63)
		J 9,1 r *	J
J 9,1	9,1 mm	J 9,1 r B	J
		J 9,1 r BK	J
		J 11,1 hr *	J
		J 11,1 r *	J
1 44 4		J 11,1 r A	J
J 11,1	11,1 mm	J 11,1 r CSB	J
		J 11,1 r B	J
		J 11,1 r BB	J

^{*} tipo standard

Gama de	números fabricada		llustración del
N° J	N° ISO (mg/pieza)	perfil de alambre	cursor
18 – 40	11,8 – 355	•	ר
23 – 33	22,4 – 112	•	tipo standard
34 – 40	11,8 – 21,2	•	tipo B y BK
12 – 13	1060 – 1320		О О
14 – 40	11,8 – 850	•	tipo tipo standard A
20 – 30	30 – 180	•	J
20,5 – 35	20 – 160	•	tipo CSB
17 – 31	26,5 – 450	•	J
16 – 28	40 – 560	•	tipo tipo B BB

5.5 Cursores J de nylón

	J 9,1			J 11,1			J 17,4			Curso acero (i	
<u> </u>	Super	Super	Nylon	Super	Super	50	Super	Super	Gama de co-	compa	
Nylon N°ISO	Nylon N°ISO	Nylon 3 N°ISO	N°ISO	Nylon N°ISO	Nylon 3 N°ISO	Nylon N°ISO	Nylon N°ISO	Nylon3 N°ISO	lores	N° J	N°ISO
40	45		40	45					verde	24	90
45	45	50	45	45	50				negro	23 1/2	100
50	50	50 55	50	50	50				rojo	23	112
55 60	55 60	55 60	55 60	55 60	55 60				rosa azul oscuro	22 1/2 22	118 132
70	70	70	70	70	70				violeta oscuro	21 1/2	140
80	80	80	80	80	80	80			marrón	21 1/2	150
90	90	90	90	90	90	90	90		azul	20	180
100	100	100	100	100	100	100	100	100	amarillo	19 1/2	224
112	112	112	112	112	112	112	112	112	naranja	19	250
125	125	125	125	125	125	125	125	125	rojo oscuro	18 1/2	300
140	140	140	140	140	140	140	140	140	turqui	18	355
160	160	160	160	160	160	160	160	160	marrón oscuro	17 1/2	400
	180	180	180	180	180	180	180	180	violeta	17	450
		200	200	200	200	200	200	200	verde	16 1/2	500
			225	225	225	225	225	225	naranja	16	560
			250	250	250	250	250	250	rojo	15 1/2	630
			280	280	280	280	280	280	azul oscuro	15	710
			320	320	320	320	320	320	marrón	14 1/2	800
			360	360	360	360	360	360	azul	14	850
			400	400	400	400 450	400 450	400 450	amarillo	13 12 1/2	1060 1180
			450 510	450 510	450 510	510	510	510	naranja	12 1/2	1320
			580	580	580	580	580	580	rojo oscuro marrón oscuro	11 1/2	1400
			660	660	660	660	660	660	verde	11 1/2	1600
			740	740	740	740	740	740	azul oscuro	10	1800
			830	830	830	830	830	830	violeta oscuro	9	2120
				940	940	940	940	940	marrón	8	2360
					1060	1060	1060	1060	azul	7	2650
Cur	sores I	de nyló	n se fa	hrican e	n una	1200	1200	1200	naranja	6	3000
		de ni				1340	1340	1340	rojo oscuro	-	-
						1500	1500	1500	marrón oscuro	-	-
	•	n existe				1700		1700	verde	-	-
		ra de vi	•	•	•	1900	1900	1900		-	-
		3. Los				2150	2150	2150	rojo	-	-
		para títu				2400	2400	2400	violeta	-	-
•	_	so. Las				2700	2700	2700	azul oscuro	-	-
		ante sor				3050	3050 3450	3050 3450	amarillo	-	-
alca	nzar vel	ocidade	s de hus	so mayo	res en	3450	3850	3850	marrón violeta oscuro	-	-
com	paració	n con cu	irsores (de acerd).		3030	4350		_	-
		-						1000	VCIUC		
	N° 125 – 580							N°	280 – 3050)	
J								7			
	J 11.1	Nylor	n / Sup	erNylo	on		J	11.1 N	lylon / Supei	Nylon	

Para colocar y sacar cursores de nylón pesados puede ser utilizado una herramienta de la tabla de la página 69.

5.6 Recomendaciones de uso

Aros J de acero

Altura del aro recomendada y cursores J para continuas de estambre

		Altura del aro recomendada y				
Calidad del hilo	Tít	ulo	cursores	de acero	SuperNylon	
	Nm	tex	J 9,1	J 11,1	J 9,1	J 11,1
	12 – 18	56 – 84	-	x	x	х
	18 – 28	36 – 56	o	x	o	o
Lana 100%	28 – 48	21 – 36	o	x	-	-
	48 – 64	16 – 21	x	o	-	-
	más fino 64	más fino 16	x	o	-	-
	12 – 18	56 – 84	-	х	х	х
Lana/ Fibras	18 – 28	36 – 56	o	x	o	o
sintéticas	28 – 48	25 – 36	o	x	-	-
	48 - 60	17 – 25	x	o	-	-
	20 – 28	36 - 50	o	х	o	o
Poliéster 100%	28 – 40	25 – 36	o	x	-	-
Acrílicos 100%	44 – 50	20 - 30	x	x	-	-
	más fino 50	más fino 20	x	o	-	-

x = cursor preferido

o = aplicación posible

^{- =} no posible

Números de cursores J en la hilatura

Hilados de estambre, semi-estambre y fantasía					Método SIRO-SPUN					
Nm	tex	Ne _k	Ne _w	de acero N° (J- N°)	Cursores SuperNylon N° (mg)	Nm	tex	Ne _k	curso- res de ace- ro N° (J-N°)	Curso- res Supe Nylon N° (mg)
0,4	2500		0,8		3050 – 3850					
0,6	1650		1,2		2400 - 3050					
0,8	1250		1,6	6	1900 – 2400					
1	1000	0,9	2	7	1340 – 1700					
1,2	840	1,1	2,3	8	1060 – 1340					
1,4	710	1,2	2,7	9	940 – 1060					
1,7	590	1,5	3,3	10	830 – 940					
2	500	1,8	3,9	11	740 – 830					
2,5	400	2,2	4,8	11/12	660 – 740					
3	330	2,7	5,8	12/13	580 – 660					
4	250	3,5	7,8	13/14	450 – 510					
6	165	5,3	11,6	14/15	320 - 360					
8	125	7	15,5	15/16	250 – 280					
10	100	9	19,4	16/17	160 – 180	20/2	50/2	18/2	17/18	160/180
12	84	10	23,3	17/18	160	24/2	42/2	21/2	18/19	140/160
14	71	12	27	17/18	140*	28/2	36/2	25/2	18/19	125/140
16	63	14	31	18-19	125*	32/2	31/2	28/2	19/20	112/125
18	56	16	35	18-19	112*	36/2	28/2	32/2	19/20	100/112
20	50	18	39	19-20	100*	40/2	25/2	35/2	20/21	90/100
24	42	21	47	20-21	90*	48/2	21/2	42/2	21/22	70/80
28	36	25	54	20-22	90*	52/2	19/2	46/2	21/22	60/70
32	31	28	62	21–24	80*	64/2	16/2	56/2	22 – 24	50/60
36	28	32		22-25	,	72/2	14,5/2	62/2	22 – 25	45/50
40	25	35		23 – 26	* utilizar sola-	80/2	12,5/2	70/2	23 – 26	40/45
44	22,5	39		24-27	mente la calidad "					
50	20	44		25-28	SuperNylon"					
56	18	50		26-29						
60	16,5	54		27-30						
70	14,5	62		29-32						
85	12	76		30-33						
100	10	90		32-34						
120	8,5	105		34-36						

variedad de las condiciones de trabajo (tipo de continua, estado de los aros, lubricación de los aros, tipo de cursor, calidad y torsión del hilo, borrilla, velocidad de huso o de cursor, clima, etc.) pueden darse diferencias.

5.7 Útiles para colocar y sacar cursores J

Aparato colocador TRAVELLER PIXER LW 26-2

(para colocar cursores de acero encartuchados AP)

Aro		Denominación	TRAVI			
Denomi-	Altura mm	de los	Denomina-	Cursore	Artículo N°	
nación		cursores	ción de la varilla	N° R+F	N° ISO	IN
J 9,1	9,1	J 9,1 r	J 9,1	20 – 30	30 – 180	60700
		J 9,1 r A				
		J 9,1 r B				
	11,1	J 11,1 r	J 11,1	19 – 30	30 – 250	60709
		J 11,1 r A				
J 11,1		J 11,1 r CSB	J 11,1 CSB	26 - 30,5	28 - 63	60710
		J 11,1 r B	J 11,1	19 – 30	30 – 250	60709
		J 11,1 r BB				

Tenazas y sacadores para cursores (para colocar y sacar)

Aro		Denominación		Artíoulo
Denomi- nación	Altura mm	de los cursores	Tenazas (LZ) Sacadores (LA)	Artículo N°
			LZ con sacador p. cursores de acero	
J 9,1	9,1	J 9,1 Steel	LZ/A - J 9,1 S	60160
J 11,1	11,1	J 11,1 Steel	LZ/A - J 11,1 S	60119
J 17,4	17,4	J 17,4 Steel	LZ/A - J 17,4 S	60120
			LZ con sacador p. cursores de nylón	
J 11,1	11,1	J 11,1 Nylon	LZ/A - J 11,1 N	60120
J 17,4	17,4	J 17,4 Nylon	LZ/A - J 17,4 N	60114

6. Aros HZ

6.1 Materiales de los aros

Aros HZ de acero se hacen de aceros de alta calidad especialmente seleccionados, los cuales obtienen mediante un tratamiento térmico una alta dureza contra el desgaste. Tratamientos especiales para las superficies del aro logran una finura óptima y superficie uniforme en las zonas de contacto con los cursores, con lo que es posible un rodaje corto.

Aros HZ de acero sinterizado

Las áreas en contacto con el cursor, durante su operación, entregan la cantidad óptima de aceite. Con esto son accesibles altas velocidades de los cursores y husos y alta velocidades de entrega. Estos aros se aplican preferentemente cuando

- hay que cumplir con altas exigencias de calidad, relativas a uniformidad y limpieza del hilado (al trabajar hilados claros y sensibles a la suciedad)
- se trabaja fibras continuas sintéticas, retorcidos de cord para neumáticos, hilados de vidrio, retorcidos de coser o cuando
- se aplican cursores de nylón.

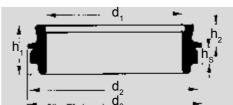
Hay que tener en cuenta la limitación de uso en el sector de cursores de acero pesados, para evitar dañar el aro por sobrecarga.

Cursores de acero mas pesados utilizados:

Denominación	N° R+F	N° ISO
HZ 9,5	N° R+F 24	ISO 90
HZ 10,3	N° R+F 23	ISO 112
HZ 11,1	N° R+F 22	ISO 132
HZ 16,7	N° R+F 18	ISO 355

Si cursores más pesados son necesarios, sólo los cursores de nylon pueden ser usados. Con alturas del anillo HZ 25.4 y HZ 38,1 se debe solamente utilizar cursores de nylon.

En el retorcido con estiraje, se aplican preferentemente los cursores de acero de los tipos "Express" sobre las alturas del aro HZ 9,5 • HZ 10,3 y HZ 11,1.


Los aros de acero sinterizado necesitan un cuidado continuo para posibilitar buenos resultados de marcha a largo plazo. Para eso hay que limpiar e impregnar en ciertos intervalos los aros con un aceite especial recomendado.

Si necesita mayor información sobre estos datos detalladamente, pida entonces por favor nuestra Hoja informativa de datos técnicos.

6.2 Perfiles, diámetros y alturas de los anillos

4	HZ	Perfil standard para cursores de acero
	HZ-B	Perfil standard con pasaje de hilo ampliado para cursores de acero
1	HZ-BS	Perfil especial para cursores de nylón (también para cursores de acero)
	HZ-B-BS	Perfil especial para cursores de nylón (también para cursores de acero)
1	HZ-BS-K	Perfil especial para cursores de nylón (también para cursores de acero)

Diámetros y alturas de aros

Diámetros de aros en mm Alturas de aro en mm

d₁: Ø interior del aro

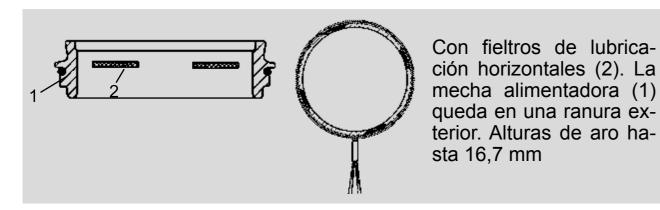
d₂: Ø del asiento del aro

d₃: Ø exterior del aro (Ø del talón)

h₁: Altura del aro

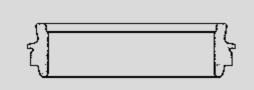
h₂: Altura del aro encima de la platabanda

h.: altura del asiento del aro

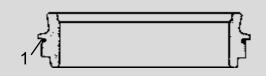

·	d ₃	₽-	ento del aro					
		Der	nominació	n de las a	alturas de	aro		0
	HZ 6,3	HZ 9,5	HZ 10,3	HZ 11,1	HZ 16,7	HZ 25,4	HZ 38,1	ites Ø d d ₂
			Alturas	de aro h ₁	en mm			lím lel 9 on 9
Ø interior						•] —	Diferencias límites (tolerancias del \emptyset del asiento) con d $_2$
del aro d ₁				_	3			enc ncia ente
	4	à	4	ì	1	•		ifer era asi
	1 6,3	9,5	10,3	11,1	16,7	<u> </u>	38,1	D (tol
	0,5	9,5		lel asiento		25,4	J 30, 1	en mm
48	61	57		ioi dolonic	, u ₂			On min
50	63	59	59	59				
55	68	64	64	64				
57	70	66	66	66				0
60	73	69	69	69	69			0 -0,25
65	78	74	74	74	74			-0,25
70	83	79	79	79	79			
75	88	84	84	84	84			
80	93	90	90	90	90			
90	103	100	100	100	100	101		
100	113	112	112	112	112	112		0
110		122	122	122	122	122		-0,32
115		127	127	127	127	127		,
125		137	137	137	137	137		
127		139	139	139	139	139	450	
140		152 163	152	152	152 163	152 163	152 163	0
150 152		165	163 165	163 165	165	165	165	-0,4
160		173	173	173	173	173	173	
180		193	193	193	193	193	193	
200		100	100	100	213	213	213	
220					233	233	233	0
225					238	238	238	-0,55
250					263	263	263	

Los diámetros de aro d1, d2 y la altura de aro h1 siguen en gran parte la norma. A petición pueden fabricarse aros en otros diámetros no indicados en la tabla.

Diámetro del asiento del aro d2: Según el sistema de lubricación, la sujeción del aro, la centrabilidad y la intercambiabilidad pueden preverse diámetros de asiento más grandes o más pequeños que los indicados en la tabla. Otras dimensiones límite para d2 a petición. Las dimensiones límite no son aplicables para una posible ovalidad.


Mecha sobre alambre para muelles (1) en ranura incli- nada. Álturas de aro hasta 16,7 mm

HZ-D-F


HZ de acero sinterizado son suministrados bañados en aceite especial. Un reengrase o sea una imbibición es necesaria a intervalos regulados.

HZ-Si

Aro de acero sinterizado sin mecha alimentadora

HZ-Si-SR

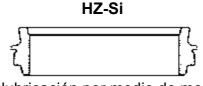
Aro de acero sinterizado con mecha alimentadora (1) en una ranura exterior.

6.3 Lubricantes

Lubricantes para aros HZ de acero

Sistemas de lubricación

mecha con alambre para muelles en ranura inclinada


lubricación combinada de mecha y fieltro

Altura del aro		•				
Denominación y	Aceites con curs	ores de acero	Aceites con cursores de nylón			
medidas	aceite sintético	aceite mineral	aceite aceite minera			
HZ 9,5 (9,5 mm) HZ 10,3 (10,3 mm) HZ 11,1 (11,1 mm)	ISO VG 32	ISO VG 32 (event. 46)	ISO VG 32 (event. 46)	ISO VG 32 (event. 46)		
HZ 16,7 (16,7 mm)	ISO VG 32 (event. 46)	ISO VG 32 (event. 46)	ISO VG 46	ISO VG 46 (event. 68)		

^{*} En la práctica son admisibles viscosidades de aceite ligeramente diferentes

Lubricantes para aros HZ de acero sinterizado

Sistemas de lubricación

sin lubricación por medio de mecha lubricación por medio de mecha exterior

Altura del aro	Grupo de viscosidad ISO *								
Denominación y	Aceites con cur	sores de acero	Aceites con cursores de nylón						
medidas	aceite sintético	aceite mineral	aceite sintético	aceite mineral					
HZ 6,3 (6,3 mm) HZ 9,5 (9,5 mm) HZ 10,3 (10,3 mm) HZ 11,1 (11,1 mm)	ISO VG 15	ISO VG 32	ISO VG 22 (event. 32)	ISO VG 32 (event. 46)					
HZ 16,7 (16,7 mm) HZ 17,1 (17,1 mm) HZ 25,4 (25,4 mm) HZ 38,1 (38,1 mm)	ISO VG 15 (ev. 22) - - -	ISO VG 32 (ev. 46) - - -	ISO VG 32 (event. 46)	ISO VG 46 (event. 68)					

^{*} En la práctica son admisibles viscosidades de aceite ligeramente diferentes

6.4 Recomendaciones para los aceites de los diversos fabricantes de aceite

6.4	1 R	Rec	or	ne	nc	dad	cic	one	es	pa	ıra	lo	Sa	ace	eite	es	de	lo	S	div	er/	SC	s	fak	ori	ca	nto	es	de	a	cei	te
		ISO VG 68		Renolin B 20				Klüber Silvertex W 68	Textol RLA ISO 68	Energol HLP-HM 68	Hyspin AWS 68	Hyspin ZZ 68	Hyspin DSP 68	Tribol 943 AW 68	Teresstic T 68	Nuto H 68	Mobile Velocite HP 68	Mobile DTE 26	Shell Tellus S2 MA 68	Texaco Rando HD 68	Clarity Synthetic Hydraulic Clarity Synthetic Hydraulic Clarity Synthetic Hydraulic	Oil AW 68		Travol SR 68		Tixo SEW 500	Tixo SEW 580			Alustart SH 68	Alustart HY 68	Textil White FU 68
aceite mineral	sidad	ISO VG 46	Renolin B 15	Renotex 452				Klüberoil Tex 1-46 N	Textol RLA ISO 46	Energol HLP-HM 46	Hyspin AWS 46	Hyspin ZZ 46	Hyspin DSP 46	Tribol 943 AW 46	Teresstic T 46	Nuto H 46	Mobile Velocite HP 46	Mobile DTE 25	Shell Tellus S2 MA 46	Rando HD 46	Clarity Synthetic Hydraulic	Oil AW 46		Travo 8710	Tixo SEW 400	Tixo Slide PRE 46	Azolla ZS 46			Alustart SH 46	Alustart HY 46	Textil White FU 46
	ISO categoría de viscosidad	ISO VG 32		Renolin B 10			Klüberoil Tex 1-32 N	Klüber Silvertex W 32	Textol RLA ISO 32	Energol HLP-HM 32	Hyspin AWS 32	Hyspin ZZ 32	Hyspin DSP 32	Tribol 943 AW 32	Teresstic T 32	Nuto H 32	Mobile Velocite HP 32	Mobile DTE 24	Shell Tellus S2 MA 32	Rando HD 32	Clarity Synthetic Hydraulic	Oil AW 32		Travol SR 32 SE	Tixo SEW 300	Tixo Slide PRE 32	Azolla ZS 32			Alustart SH 32	Alustart HY 32	Textil White FU 32
aceite sintético		ISO VG 32 + 46		Plantohyd 46 S	Klüber Silvertex T 32	Summit HySyn FG 32	Klüber Silvertex T 46	Summit HySyn FG 46	Textol RLA ISO VG 46	Enersyn RC ISO 46			Aircol SR 32	Aircol SR 46	Mobil SHC 624 (VG 32)				-			Hydra 46		_	Tixo Slide EM 32 SP	Tixo Slide TH 27	Tixo Slide EM 46 SP	Alusynt BDH 32+46	Alusynt FGL 32+46		Alusynt Textil S 32+46	Alusynt Textil SL 22 Alusynt Textil SL 32+46
aceit		ISO VG 15 + 22	Plantohyd 15 S	Plantohyd 22 S				Syntheso XOL 12	Zeller&Gmelin Textol RLA ISO 15	-				Optileb HY 15	-				-			-	Travol 8112 VG 15	Travol 8112 VG 22		Tixo Slide EM 22 SP		Alusynt BDH 22	Alusynt FGL 15+22	Alusynt Dinal PS 22	Alusynt Textil S 22	Alusynt Textil SL 22
	fabricante de	aceite	Fuchs		Klüber				Zeller&Gmelin	Вр	Castrol				Mobil				Shell	Texaco /	Chevron /	Caltex	Vickers		Petronaphte			Aluchem				

7. Cursores HZ

7.1 Cursores HZ de acero

Tratamientos superficiales

La calidad superficial SuperPolish es para cursores tipo HZ la versión estándar. Otros tratamientos superficiales tales como BlackSpeed son posibles sin embargo no traen debido a la lubricación del aceite en la mayoría de los casos ninguna ventaja considerable.

Para el sector de máquinas estiradoras-retorcedoras o sea, cuando se proce- san títulos textiles a muy elevadas velocidades se aplican cursores de acero cromado duro. Con estos cursores la parte del pasaje de hilo está cromado duro. Estos cursores se ofrecen en dos diseños.

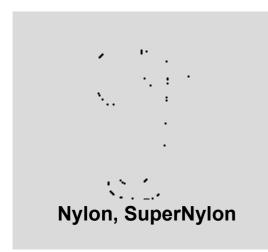
Formas de cursores

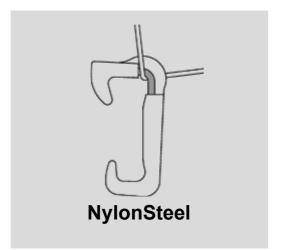
HZ

tipo A

J

tipo Express A


7.2 Tabla de comparación de los pesos / números de cursores HZ de acero


Cursor N°	R+F N° ISO	R+F HZ 9,5 AN N° ISO	Bräcker N° ISO	Cursor N°	R+F N° ISO	R+F HZ 9,5 AN N° ISO	Bräcker N° ISO
12	1320			24,5	85		80
12,5	1180			25	75	36	71
13	1060			25,5	67		67
13,5	950			26	60	30	63
14	850			26,5	53		56
14,5	800			27	50	25	50
15	710		710	27,5	45		45
15,5	630		630	28	40	19	40
16	560	356	560	28,5	35,5		35,5
16,5	500		500	29	33,5	16,2	31,5
17	450	259	450	29,5	31,5		30
17,5	400		400	30	30	13	28
18	355	188	355	30,5	28		
18,5	300		280	31	26,5	11,3	25
19	250	136	250	31,5	25		
19,5	224		224	32	23,6	9,7	22,4
20	180	104	180	33	22,4		
20,5	160		170	34	21,2		20
21	150	84	160	35	20		
21,5	140		140	36	18		18
22	132	65	125	37	16		16
22,5	118		118	38	15		
23	112	53	112	39	13,2		
23,5	100		100	40	11,8		
24	90	42	90	(N° ISO	= peso d	del cursor	en mg)

7.3 Programa de producción de los cursores HZ de acero para aros

aro		Denomina-		números cada		tración del
Denomi- nación	mm	ción de los cursores	N° HZ	N° ISO (mg/ pieza)	perfil de alambre	cursor
HZ 9,5	9,5	HZ 9,5 r Express A	19 – 27	50 – 250	•	tipo Express A
HZ 10,3	10,3	HZ 10,3 r Express A	19 – 32	23,6 - 250	•	Tipo Express A
HZ 11,1	11,1	HZ 11,1 r Express A	18 – 31	26,5 – 355	•	tipo Express A
HZ 16,7	16,7	HZ 16,7 r A	13 – 20	180 – 1060	•	T tipo A

7.4 Cursores de nylón para aros HZ

Los cursores de nylon fabricados por nosotros para las diferentes formas y alturas de aro fueron desarrollados de acuerdo a las demandas en la práctica. De esta forma se creó una gran variedad de formas y números, que pueden ser entregados en varias variantes de material, las cuales pueden ser Nylon, SuperNylon (reforzado con fibras de vidrio) y Nylon-Steel (con refuerzo de acero). Debido a la permanente investigación y al perfeccionamiento, lo cual mejora constante- mente la calidad del material, las formas, la característica de la superficie y la resistencia al desgaste, cumplimos con la solicitud de los clientes de entregar siempre el mejor producto para la elaboración de sus hilos.

Existe la posibilidad de escoger para cada aplicación el cursor mas adecuado, como por ejemplo para hilos e hilos retorcidos, para hilos de fibra de vidrio, hilos de alfombras, hilos técnicos como filamentos y cord para neumáticos. En la elaboración de hilos que son muy agresivos en el paso del cursor es posible emplear los cursores reforzados del tipo SuperNylon o NylonSteel.

En caso de haber preguntas nuestro servicio de asesoramiento R+F está a su disposición en cualquier momento para aconsejarle en la elección del cursor ideal. Para este servicio es importante poder indicar detalles sobre aros (HZ o J), altura del aro, calidad y título del hilo.

Los cursores de nylon son fabricados mayormente de acuerdo a la numeración ISO (mg-No.). Aparte se fabrican algunas alturas de aros y cursores de nylon de acuerdo al sistema de numeración americano. Para facilitar la diferenciación entre los No. de cursores estos están teñidos de diferentes colores.

7.5 Gama de producción para cursores de nylón para aros HZ 9,5 y HZ 11,1

			Gama fab	ricada
para aros	llustración	Denominación de los cursores	N° ISO (mg/pieza)	N° americ
HZ 4,8 4,8 mm	\mathcal{C}	HZ 4,8 DO Nylon	20 – 40	
		HZ 9,5 Nylon	40 – 320	
		reforzado con fibra de vidrio:		
)	HZ 9,5 SuperNylon	40 – 400	
		con refuerzo de acero:		
HZ 9,5 9,5 mm		HZ 9,5 NylonSteel	80 – 320	
.,.		HZ 9,5 Nylon H	100 – 360	
		reforzado con fibra de vidrio:		
		HZ 9,5 SuperNylon H	112 – 580	
	\mathcal{C}	HZ 9,5 Nylon E-DO	(162 – 421)	25 - 65
	(HZ 9,5 Nylon E-C	32 – 104	5 – 16
HZ		HZ 11,1 Nylon	40 – 740	
11,1		reforzado con fibra de vidrio:	a solicitor	
11,1 mm		HZ 11,1 SuperNylon	a solicitor	

Números de los cursores de nylón para aros HZ 9,5 y HZ 11,1

HZ	9,5	HZ 11,1			0.0400
*Nylon/	Nylon-	*Nylon/	Gama	de	sores acero
SuperNylon	Steel	SuperNylon	de colores	·	ıparables)
N°	ISO = peso en r	ng		N° HZ	ISO-Nr (mg)
30			marrón oscuro	25	75
35			violeta	24 1/2	85
40		40	verde	24	90
45		45	negro	23 1/2	100
50		50	rojo	23	112
55		55	rosa	22 1/2	118
60		60	azul oscuro	22	132
70		70	violeta oscuro	21 1/2	140
80		80	marrón	21	150
90		90	azul	20	180
100	100	100	amarillo	19 1/2	224
112	112	112	naranja	19	250
125	125	125	rojo oscuro	18 1/2	300
140	140	140	turqui	18	355
160	160	160	marrón oscuro	17 1/2	400
180		180	violeta	17	450
200	200	200	verde	16 1/2	500
225		225	naranja	16	560
250		250	rojo	15 1/2	630
	250		azul oscuro	15 1/2	630
280		280	azul oscuro	15	710
320		320	marrón	14 1/2	800
360		360	azul	14	850
400		400	amarillo	13	1060
450		450	naranja	12 1/2	1180
510		510	rojo oscuro	12	1320
580		580	marrón oscuro	11 1/2	1400
660		660	verde	11	1600
740		740	azul oscuro	10	1800
830		830	violeta oscuro	9	2120
940		940	marrón	8	2360
1060			azul	7	2650
1200			naranja	6	3000

^{*} Gama fabricada para calidad de material y tipos de cursores ver página 81

Gama de producción para cursores de nylón para aros HZ 9,5 tipos y números americanos

tipo E-C	tipo E-C)	3		Cursores de acero (Nº comparables)		
tipo y N°	N° ISO.	Gama de colores	tipo y N°	N° ISO.	Gama de colores	N° HZ	N° ISO (mg)		
E-5-C	32	violeta							
E 6-C	39	amarillo				24	90		
E-7-C	45	rojo vinoso				23 1/2	100		
E-8-C	52	naranja				23	112		
E-9-C	58	azul oscuro				22	132		
E-10-C	65	turqui				21 1/2	140		
E-11-C	71	negro				21 1/2	140		
E-12-C	78	naranja				21	150		
E-13-C	84	violeta				20 1/2	160		
E-14-C	91	amarillo claro				19 1/2	224		
-	-	-	DO	100	amarillo	19	250		
E-16-C	104	verde oscuro	E-16-DO	104	amarillo	19	250		
			DO	125	rojo oscuro	18 1/2	300		
			E-22-DO	143	rojo	18	355		
			E-25-DO	162	negro	17 1/2	400		
			DO	180	violeta	17	450		
			E-29-DO	188	azul	17	450		
			E-31-DO	200	verde	16 1/2	500		
			E-33-DO	214	marrón	16 1/2	500		
			DO	225	naranja	16	560		
			E-37-DO	240	violeta	15 1/2	630		
			E-39-DO	253	rojo	15 1/2	630		
			E-45-DO	292	naranja	15	710		

Reforzado con fibras de vidrio: Calidad Super-Nylon sobre demanda.

Gama de producción para cursores de nylón para aros HZ 16,7

para aros	Ilustración	Denominación de los cursores	Gama fabricada R+F / N° ISO
		HZ 16,7 Nylon	100 – 3050
		reforzado con fibra de vidrio:	
		HZ 16,7 SuperNylon	100 – 3850
)	HZ 16,7 SuperNylon 3	112 – 1340
		con refuerzo de acero:	
		HZ 16,7 NylonSteel	125 – 2000
		HZ 16,7 Nylon C	125 – 1900
		reforzado con fibra de vidrio:	
HZ16,7	7	HZ 16,7 SuperNylon C	112 – 1500
16,7 mm		reforzado con fibra de vidrio:	
	J	HZ 16,7 SuperNylon B	400 – 2400
		HZ 16,7 Nylon H	112 – 2400
		reforzado con fibra de vidrio:	
)	HZ 16,7 SuperNylon H	160 – 2700
		reforzado con fibra de vidrio:	
		HZ 16,7 SuperNylon G-C	a solicitor

Números de los cursores de nylón para aros HZ 16,7

	HZ 16,7 Ny	/lon		Z 16,7 númer	Nylon o americano		es de acero emparables)
*Nylon R+F/ ISO-Nr.	Nylon Steel N° R+F/ ISO	Gama de colores	N°	N° ISO	Gama de colores	N° HZ	N° ISO (mg)
70	-	violeta osc.				21 1/2	140
80	-	marrón				21	150
90	-	azul				20	180
100	-	amarillo				19 1/2	224
112	-	naranja				19	250
125	125	rojo oscuro	0.04.0	400		18 1/2	300
140	140	turquí	G-21-C	136	azul oscuro	18	355
160	160	marrón osc.	G-24-C	156	negro	17 1/2	400
180	180	violeta	G-28-C	181	violeta	17 16/17	450
200 225	200 225	verde naranja	G-33-C	214	amarillo claro	16/17	450/560 560
250	250	rojo	G-33-C	240	rojo	15/16	560/710
280	280	azul oscuro	G-46-C	298	rosa	15/10	710
320	320	marrón	G-48-C	311	azul	14/15	710/850
360	360	azul	G-56-C	363	amarillo	14	850
400	400	amarillo	G-65-C	421	rojo vinoso	13	1060
450	450	naranja	G-67-C	434	verde oscuro	12/13	1060/1320
-	500	rojo	-	-	-	12	1320
510	-	rojo oscuro	G-78-C	505	negro	12	1320
-	560	marrón osc.	-	-	-	11/12	1320/1600
580	-	marrón osc.	G-88-C	570	amarillo claro	11/12	1320/1600
630	630	naranja	G-94-C	609	rojo	11	1600
660	-	verde	G-103-C	667	amarillo	11	1600
710	710	rojo	G-110-C	713	azul oscuro	10/11	1600/1800
740	-	azul oscuro	G-118-C	767	rojo	10	1800
- 020	800	azul	G-124-C G-127-C	804 823	azul oscuro	9/10 9	1800/2120 2120
830	900	violeta osc. violeta	G-127-C	901	rosa azul	8/9	2120/2360
940	900	marrón	G-139-C	933	negro	8	2360
-	1000	azul oscuro	G-152-C	985	violeta	7/8	2360/2650
1060	-	azul	G-164-C	1063	rosa	7	2650
-	1120	amarillo	G-180-C	1166	turquí	6/7	2650/3000
1200	-	naranja	G-184-C	1190	verde oscuro	6	3000
-	1250	rojo	G-186-C	1200	verde claro	5/6	3000/3350
1340	=	rojo oscuro	G-203-C	1320	azul oscuro	5	3350
-	1400	turquí	G-225-C	1458	naranja	4/5	3350/4000
1500	-	marrón osc.	G-230-C	1490	azul	4	4000
-	1600	violeta	G-248-C	1610	violeta	3/4	4000/4500
1700	-	verde	G-257-C	1670	verde claro	3	4500
-	1800	verde _.	G-277-C	1790	amarillo		
1900	-	naranja	G-282-C	1850	rojo		
-	2000	naranja					
2150		rojo					
2400 2700		violeta					
3050		azul oscuro amarillo					
3450		marrón					
3850		violeta osc.					
4350		verde					
1000		1.0100					

Gama de producción para cursores de nylón para aros HZ 25,4y HZ 38,1

para aros	Ilustración	Denominación de los cursores	Gama fabricada N°R+F/ISO
		HZ 25,4 Nylon	225 – 4900
		reforzado con fibra de vidrio:	
		HZ 25,4 SuperNylon	250 – 6300
		HZ 25,4 SuperNylon 3	3850 - 6300
HZ 25,4	7	con refuerzo de acero:	
25,4 mm		HZ 25,4 Nylon Steel	650 – 4500
		HZ 25,4 Nylon H	320 – 2150
		reforzado con fibra de vidrio:	
		HZ 25,4 SuperNylon H	360 – 2400
		HZ 25,4 SuperNylon 3 H	400 – 2700
		HZ 38,1 Nylon	1500 – 12000
HZ 38,1 38,1 mm		reforzado con fibra de vidrio:	
		HZ 38,1 SuperNylon	2150 – 20000
		HZ 38,1 SuperNylon 3	on request

Números de los cursores de nylón para aros HZ 25,4 y HZ 38,1

HZ 25,4 Nylon		HZ 38,1 Nylon
*R+F / ISO-Nr.	Gama de colores	* N° R+F/ ISO
225	naranja	
250	rojo	
280	azul oscuro	
320	marrón	
360	azul	
400	amarillo	
450	naranja	
510	rojo oscuro	
580	marrón osc.	
660	verde	
710	rojo	
740	azul oscuro	
830	violeta oscuro	
940	marrón	
1060	azul	
1200	naranja	
1340	rojo oscuro	
1500	marrón osc.	1500
1700	verde	1700
1900	naranja	1900
2150	rojo	2150
2400	violeta	2400
2700	azul oscuro	2700
3050	amarillo	3050
3450	marrón	3450
3850	violeta oscuro	3850
4350	verde	4350
4900	naranja	4900
5500	azul	5500
6300	rojo	6300
	violeta	7100
	azul oscuro	8000
	amarillo	9000
	naranja	10000
	verde	12000
	marrón	14000
	azul	17000
	naranja	20000

7.6 Recomendaciones de uso

Para trabajar hilos de filamento, generalmente se utilizan aros HZ de acero sinterizado (aros Si) o de acero (HZ-D..F). Las alturas normales de los aros son HZ 9,5, HZ 10,3, HZ 11,1 y HZ 16,7. La tabla aquí debajo indica las gamas de números comunes para las diferentes alturas de aro. La tabla especifica ambos aros, de acero y de acero sinterizado.

Los cursores de acero utilizados para aros de acero, deberían ser usados sólo hasta un cierto número de hilo en el sector grueso. Si aún se requieren cursores más gruesos que aún formen parte de nuestra gama de productos, recomen- damos aplicar cursores Nylon o NylonSteel o bien pasarse a aros más altos.

Si se utilizan cursores de acero de los tipos Express en aros de acero sinteri- zado, la gama de números está también limitada hacia el sector grueso, ya que el uso de cursores aún más gruesos conllevaría el riesgo de dañar el aro. En este caso también es recomendado de cambiarse a cursores Nylon o NylonSteel o a aros más altos.

Por otra parte, si se usan cursores de nylón, el cursor más pesado aconsejable para la altura del aro en cuestión puede elegirse, tanto para aros de acero y de acero sinterizado.

Denomina-			Gama d	e títulos
ción de las altura de los aros	Altura del aro	Materiales de los aros y sistemas de lubricacion	dtex	den
HZ 9,5	9,5	Acero sinterizado (Si-SR, Si-SR/G)	17 – 140	15 – 125
112 9,5	mm	Acero (DF)	17 – 250	15 – 230
HZ 10,3	10,3 mm	Acero sinterizado (Si-SR, Si-SR/G)	22 – 167	20 – 150
П2 10,3		Acero (DF)	22 – 330	20 - 300
U7 44 4	11,1	Acero sinterizado (Si-SR, Si-SR/G)	33 – 200	30 – 180
HZ 11,1	mm	Acero (DF)	33 – 440	30 - 400
U7 16 7	16,7	Acero sinterizado (Si-SR, Si-SR/G)	44 – 400	40 - 360
HZ 16,7	mm	Acero	44 – 1100	44 – 1000

Más detalles para el empleo de los aros de acero sinterizado, que se aplican en la mayoría de los casos, son indicados en nuestra hoja informativa RF-T-28.

Título y número de cursor recomendado

Números de cursores HZ en retorcido con estiraje (títulos textiles)

La selección del número de cursor depende principalmente de las condiciones de estiraje (esto es material estirado, títulos brillantes o mates, números especiales, mono o multifilamentos, preparación, sistema de enrollamiento, velocidad de estiraje).

Cursores que tienen un pie del tipo Express (tipo Express-A) son recomendados como modelos standard.

El tiempo de duración de los cursores no cromados está entre 1 y 5 mudadas, dependiendo de las velocidades elevadas de enrollamiento y en consecuencia de la elevada velocidad del hilo pasando por el arco del cursor. Estas altas velocidades dan por resultado finas incisiones en el cursor y finalmente daño a la capilaridad del hilo. Para incrementar su resistencia al desgaste, se hacen cursores cromados

La tabla siguiente contiene valores empíricos con relación a la selección de números de cursores para diferentes de títulos textiles.

Titulas	44:1			N° de		
Títulos	textiles	N° ISO(mg/		cursores	de acero	cursores
dtex	den	pieza)	N° HZ	N° HZ-EN	N° HZ-AN	Nylon-Steel (mg/pieza)
17	15	21,2 - 23,6	31 – 32	31 – 32	27 – 28	
22	20	23,6 - 30	30 – 31	30 – 31	26 – 27	
33	30	26,5 - 33,5	29 – 30	29 – 30	26 – 27	
44	40	30 – 40	28 – 30	28 – 30	25 – 26	
56	50	33,5 - 50	27 – 29	27 – 29	24 – 25	
67	60	40 – 60	26 – 28	26 – 28	23 – 24	
78	70	40 - 60	26 – 28	26 – 28	23 – 24	
90	80	50 – 75	25 – 27	25 – 27	22 – 23	
100	90	50 – 75	25 – 27	25 – 27	22 – 23	
110	100	60 - 90	24 – 26	24 – 26	21 – 22	
122	110	60 - 90	24 – 26	24 – 26	21 – 22	
133	120	75 – 112	23 – 25	23 – 25	20 – 21	
150	135	90 – 132	22 – 24	22 – 24	19 – 20	
167	150	112 – 150	21 – 23	21 – 23	19 – 20	80 - 90
200	180	132 – 180	20 – 22	20 – 22	18 – 19	80 – 112
220	200	132 – 250	19 – 22	19 – 22	17 – 20	80 – 125
235	210	132 – 250	19 – 22	19 – 22	17 – 20	90 – 140
277	250	150 – 355	18 – 21	18 – 21	16 – 19	100 – 180
330	300	180 – 450	17 – 20	17 – 20	15 – 18	100 – 225
440	400	180 – 450	17 – 20	17 – 20	15 – 18	125 – 280
550	500	250 – 560	16 – 19	16 – 19	15 – 17	140 – 360

Números de cursores HZ en hilatura

	T 41					Cursores HZ	de
	Títul	os			A	cero	Nylon
Nm	tex	Ne _K	Ne _w	Ring-Ø	R+F N° HZ	N° ISO (mg)	N° ISO (mg)
0,1	10000		0,2			25000	17000 – 20000
0,2	5000		0,4	250 – 330		19000	14000 - 17000
0,3	3300		0,6			15000	10000 - 14000
0,4	2500		0,8	180 – 250		10000	7100 – 12000
0,6	1650		1,2	100 200		8000	4900 – 8000
0,8	1250		1,6			6300	3450 – 5500
1	1000	0,9	2	160 – 200		5000	1900 – 3450
1,2	840	1,1	2,3		3	4500	1500 – 2150
1,4	710	1,2	2,7	140 – 180	4	4000	1200 – 1700
1,7	590	1,5	3,3	140 100	5	3350	1060 – 1340
2	500	1,8	3,9	125 – 160	6	3000	940 – 1200
2,5	400	2,2	4,8	123 100	8/9	2120/2360	830 – 1060
3	330	2,7	5,8	110 – 140	10/11	1600/1800	660 – 940
4	250	3,5	7,8	110 140	11/12	1320/1600	510 – 740
6	165	5,3	11,6	90 – 125	12/13	1060/1320	320 – 450
8	125	7	15,5	30 123	14 – 16	560 – 850	225 – 320
10	100	9	19,4	75 – 110	15 – 17	450 – 710	180 – 250
12	84	10	23,3	75 110	16 – 18	355 – 560	140 – 200
14	71	12	27	65 – 95	17 – 19	250 – 450	125 – 180
16	63	14	31	00 00	18 – 20	180 – 355	112 – 160
18	56	16	35	60 – 90	19 – 21	150 – 250	100 – 125
20	50	18	39	00 00	20 – 22	132 – 180	90 – 100
24	42	21	47		21 – 23	112 – 150	80 – 90
28	36	25	54	55 – 70	22 – 24	90 – 132	70 – 80
32	31	28	62		23 – 25	75 – 112	60 – 70
36	28	32		55 – 63	24 – 26	60 – 90	
40	25	35			25 – 27	50 – 75	
44	22,5	39			26 – 28	40 – 60	
50	20	44		52 – 57	27 – 29	33,5 – 50	
56	18	50			28 – 30	33,5 - 40	
60	16,5	53		50 – 55	29 – 31	30 – 33,5	
70	14,5	62		00 00	30 – 32	26,5 – 30	

*Número de cursor: La tabla da números corrientes en la práctica. Por la variedad de las condiciones de trabajo (tipo de continua, estado y engrase de los aros, tipo de cursor, calidad de hilo, torsión del hilo, velocidad de husos o de cursores, clima, etc.) pueden darse diferencias.

Números de cursores HZ en retorcido

	Título e			Nú	imeros d	e cursor	es HZ* p	ara hilad	os	
	Títulos		2-ca	bos	3-ca	bos	4-ca	bos	6-ca	bos
Nm	tex	Ne _c	Cursor Acero N°HZ	Cursor Nylón N°ISO	Cursor Acero N°HZ	Cursor Nylón N°ISO	Cursor Acero N°HZ	Cursor Nylón N°ISO	Cursor Acero N°HZ	Cursor Nylón N°ISO
0,4	2500	0,25		14000						
0,6	1650	0,35		10000						
0,8	1250	0,5		8000		12000				
1	1000	0,6		6300		9000				
1,2	840	0,7		5500		8000				
1,4	710	0,8		4350		6300		9000		
1,7	590	1		3450		5500		8000		
2	500	1,2		2400		4350		6300		
2,5	400	1,5	4	1700		3450		4900		
3	330	1,8	5	1340	3	2400		3850		6300
4	250	2,5	6	1060	4	1900		2700		4350
6	165	3,5	8	830	6	1200	4	1700		2400
8	125	5	10	660	8	940	6	1200	3	1900
10	100	6	12	510	10	740	8	940	5	1500
12	84	7	13	400	12	580	10	740	6	1200
14	71	8	14	360	13	510	11	660	7	1060
16	63	9	15	280	14	450	12	580	8	940
18	56	11	16	225	15	360	13	510	9	830
20	50	12	17	180	16	320	14	450	10	740
24	42	14	18	140	17	250	15	360	11	660
28	36	17	19	125	18	200	16	320	12	510
34	30	20	19/20	112	18/19	180	16/17	250	13	400
40	25	24	20	100	19	140	17	200	14	360
50	20	30	21	90	19/20	125	18	180		
54	18,5	32	22	80	20	112	18 /19	160		
60	16,5	36	22/23	70	20/21	100	19	140		
70	14,5	42	23	60	21	90	19/20	112		
85	12	50	24	50/60	22	80	20	100		
100	10	60	25	50	23	70				
120	8,5	70	26	40/50	24	60				
135	7,7	80	27	40	25	50				
150	6,7	90	28	30/40						
170	6	100	29	30						
180	5,6	105	29							
200	5	120	30							

^{*}Número de cursor: La tabla da números corrientes en la práctica. Por la variedad de las condiciones de trabajo (tipo de continua, estado y engrase de los aros, tipo de cursor, calidad de hilo, torsión del hilo, velocidad de husos o de cursores, clima, etc.) pueden darse diferencias. Con altas velocidades de entrega son necesarios números de cursores más pesados (muchas veces algunos números más pesados).

Números de cursores HZ de nylón para filamentos de vidrio

Finura	del hilo	Tipos d	el hilo	Cursores HZ de nylón *		
tex	Sistema americano	ISO	Sistema americano	N°ISO	N° americano	
2,8	1770	EC 5 - 2,8	ECD 1770	20 – 25	3 - 4	
5,5	900	EC 5 - 5,5	ECD 900	25 – 30	4 – 5	
11	450	EC 5 - 11	ECD 450	35 - 50	6 – 8	
11	450	EC 7 - 11	ECE 450	35 - 50	6 – 8	
22	225	EC 7 - 22	ECE 225	45 - 60	7 - 10	
34	150	EC 6 - 34	ECDE 150	60 - 80	10 - 13	
34	150	EC 9 - 34	ECG 150	60 – 80	10 – 13	
51	97	EC 11 - 51	ECJ 97	90 – 112	14 – 18	
68	75	EC 6 - 68	ECDE 75	125 – 160	20 - 25	
68	75	EC 9 - 68	ECG 75	125 – 160	20 – 25	
102	49	EC 11 - 102	ECT 49	200 – 280	31 - 45	
136	37	EC 6 - 136	ECDE 37	250 – 400	37 - 63	
136	37	EC 9 - 136	ECG 37	250 – 400	37 – 63	
136	37	EC 13 - 136	ECK 37	250 – 400	37 – 63	
204	24	EC 11 - 204	ECJ 24	510 – 740	78 – 110	
272	18	EC 9 - 272	ECG 18	830 – 1200	127 – 186	
272	18	EC 13 - 272	ECK 18	830 – 1200	127 – 186	
408	12	EC 11 - 408	ECJ 12	1340 – 1700	203 – 257	
544	9	EC 13 - 544	ECK 9	1900 – 3050	286 – 451	

^{*} **Número de cursor:** La tabla da números corrientes en la práctica. Por la variedad de las condiciones de trabajo (tipo de continua, estado y engrase de los aros, tipo de cursor, calidad de hilo, torsión del hilo, velocidad de husos o de cursores, clima, etc.) pueden darse diferencias. El número de cursor óptimo se determina en un ensayo en la fábrica.

Números de cursores HZ de nylón para cord para neumáticos

Títu	ulos	Números de cursores HZ de nylón para					
denier Td	dtex	1-cabo	2-cabos	3-cabos			
750	840	160/180	280/320	510/580			
840	940	200/225	320/360	580/660			
900	1000	225/250	360/400	580/660			
1000	1100	225/250	360/400	660/740			
1080	1200	250/280	400/450	660/740			
1260	1400	250/280	450/510	740/830			
1500	1670	280/320	450/510	740/830			
1650	1840	280/320	450/510	740/830			
1800	2000	320/360	510/580	740/830			
2000	2200	320/360	510/580	830/940			
2160	2400	360/400	580/660	830/940			

Número de cursores HZ de nylón para la torsión suplementaria de fibras continuas sintéticas

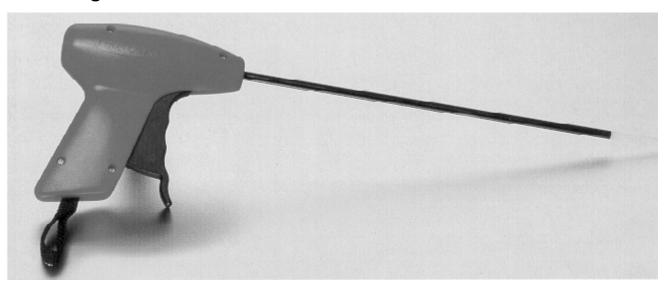
Títu	ılos		HZ-Nylon-Läuf	fernummern für Endlosfäden			
denier Td	dtex	1-cabo	2-cabos	3-cabos	4-cabos	6-cabos	
35	38				50 - 70	90 – 100	
40	44				70 – 90	100 – 125	
45	50			40 - 60	90 – 112	112 – 160	
50	56			50 - 70	100 – 125	125 – 200	
60	67			70 – 90	112 – 140	140 – 250	
70	78		40 – 70	80 – 100	125 – 160	225 – 320	
80	90		50 – 90	90 – 112	125 – 180	250 – 360	
90	100		60 – 100	100 – 125	140 – 200	280 – 400	
100	110		80 – 112	112 – 140	160 – 225	320 – 450	
120	133	40 – 80	90 – 125	125 – 160	225 – 280	510 – 660	
150	167	50 – 90	112 – 140	140 – 200	280 – 450	660 – 830	
180	200	70 – 112	125 – 180	180 – 225	360 – 510	830 – 1060	
200	220	80 – 125	140 – 200	250 – 280	450 – 580		
300	330	100 – 225	250 – 320	360 - 450	660 - 830		
400	440	125 – 280	360 – 510	510 – 660	940 – 1200		
500	550	140 – 360	450 – 580	660 - 830	1200 – 1500		
600	660	250 – 450	510 – 660	830 – 1060	1500 – 1900		
700	780	320 – 580	660 – 830	940 – 1200	1700 – 2150		
840	940	450 – 740	830 – 1060	1060 - 1340	1900 – 2400		
1050	1160	510 – 830	940 – 1200	1340 – 1700	2400 - 3050		
1260	1400	580 – 940	1060 – 1340	1500 – 1900			
1650	1840	660 – 1060	1200 – 1500	1700 – 2150			
2000	2200	740 – 1200	1340 – 1700	1900 – 2400			
3000	3300	940 – 1340	1500 – 1900	2150 - 2700			
4000	4400	1060 – 1500	1700 – 2150	2400 - 3050			
5000	5600	1200 – 1700	1900 – 2400	2700 - 3450			
6000	6700	1340 – 1900	2150 – 2700	2700 – 3450			
7000	7800	1500 – 2150	2400 - 3050	3050 - 3850			
8000	9000	1700 – 2400	2400 - 3050	3450 - 4350			
9000	10000	1900 – 2700	2700 - 3450	3850 - 4900			
10000	11000	2150 – 3050	3050 - 3850	4350 - 5500			
12500	14000	2400 - 3450	3450 - 4350	4900 - 6300			
15000	17000	2700 – 3850	3850 – 4900	5500 - 7100			

Aparato colocador TRAVELLER PIXER LW 26-2

(para colocar cursores encartuchados)

Aro				Traveller Pixe		
Denomina- ción	Alt mm	Denominación de los pulg. cursores		Denominaci- ón de la varilla	N° HZ	Artícu- lo N°
HZ 9,5	9,5	³ / ₈	HZ 9,5 r Type Express A	HZ 9,5 Ex A	20 – 31	60702
HZ 10,3	10,3	¹³ / ₃₂	HZ 10,3 r Type Express A	HZ 10,3 Ex A	19 – 30	60705
HZ 11,1	11,1	⁷ / ₁₆	HZ 11,1 r Type Express A	HZ 11,1 Ex A	19 – 30	60707

Tenazas y sacadores para cursores


(para colocar y sacar)

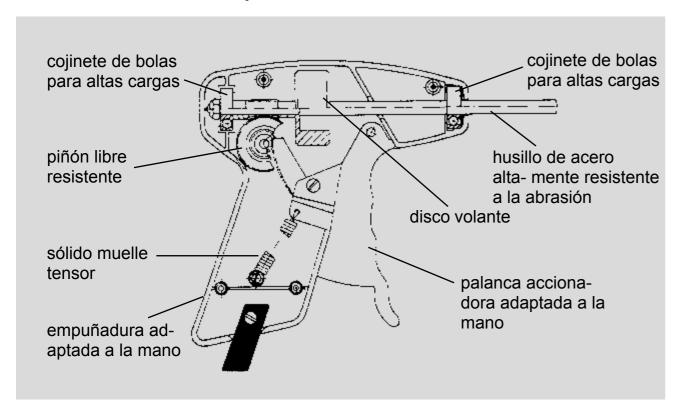
A	ro				
Denomi-	Alt	ura	 Denominación	- "-, . ".	Artí-
nación	mm	pulg.	de los cursores	Tenazas (LZ) Sacadores (LA)	culo N°
				LZ con sacador para cusores de acero	
HZ 9,5	9,5	³ / ₈	HZ 9,5 Stahl	LZ/A - HZ 9,5 S	60109
HZ 10,3	10,3	¹³ / ₃₂	HZ 10,3 Stahl	LZ/A - HZ 10,3 S	60109
HZ 11,1	11,1	⁷ / ₁₆	HZ 11,1 Stahl	LZ/A - HZ 11,1 S	60110
HZ 16,7	16,7	²¹ / ₃₂	HZ 16,7 Stahl	LZ/A - HZ 16,7 S	60112
				LZ con sacador para cusores de nylón	
HZ 9,5	9,5	³ / ₈	HZ 9,5 Nylon	LZ/A - HZ 9,5 N	60119
HZ 10,3	10,3	¹³ / ₃₂	HZ 10,3 Nylon	LZ/A - HZ 10,3 N	60119
HZ 16,7	16,7	²¹ / ₃₂	HZ 16,7 Nylon	LZ/A - HZ 16,7 N bis max. N° 830	60112
HZ 16,7	16,7	²¹ / ₃₂	HZ 16,7 Nylon	LZ/A - HZ 16,7 N todos N°	60114
HZ 25,4	25,4	1	HZ 25,4 Nylon	LZ/A - HZ 25,4 N	60116
				Sacadores para aros sinterizados	
HZ 9,5	9,5	³ / ₈	HZ 9,5 Stahl	LA - HZ 9,5 S	60121
HZ 10,3	10,3	¹³ / ₃₂	HZ 10,3 Stahl	LA - HZ 10,3 S	60121
HZ 11,1	11,1	7/ ₁₆	HZ 11,1 Stahl	LA - HZ 11,1 S	60165
HZ 16,7	16,7	²¹ / ₃₂	HZ 16,7 Stahl	LA - HZ 16,7 S	60122
HZ 38,1	38,1	11/2	HZ 38,1 Nylon	LA - HZ 38,1 N	60123

8. Recogedores de borrilla

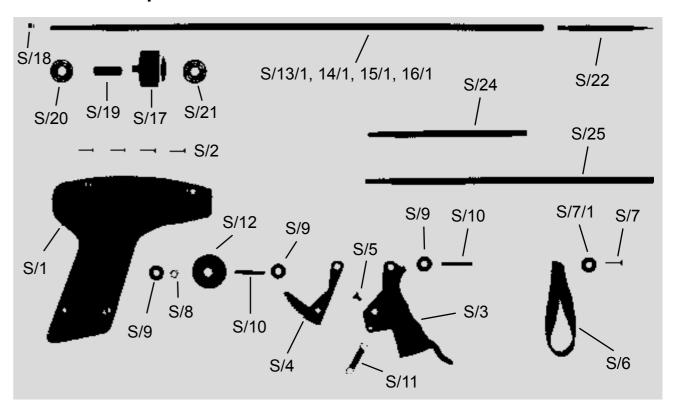
Para asegurar la calidad de productos es necesario mantener las máquinas tex- tiles libres de acumulaciones fibrosas. La limpieza puede realizarse con recoge- dores de borrilla apropiados, que están siempre disponibles para trabajar. Una suave presión a la palanca hace rodar el husillo recogedor, con ayuda del disco volante. Así se recogen las acumulaciones de fibras y se retiran.

8.1 Recogedor de borrilla SPIN CLEANER SC 1

El aparato de construcción robusta, se compone de piezas de alta calidad y muy resistentes. La mecánica, que admite altas cargas, es de materiales especial- mente resistentes al desgaste para que, incluso bajo uso constante, se da una larga duración. Gracias a la cuidadosa selección de las piezas y los materiales, el aparato trabaja sin mantenimiento. Durante el desarrollo se ha tenido especial atención en que el aparato sea fácil de mantener. Por esto motivo el cambio de todas las piezas se realiza de forma muy sencilla. Además, el diseño ergonómico de la empuñadura y de la palanca accionadora facilita el empleo diario.


EI SPIN CLEANER SC 1 se distingue por

- mejor manejabilidad
- peso más ligero
- más larga duración de rotación del husillo.


El disco volante montado sobre el husillo está posicionado en el interior de la culata, por lo tanto no estorba durante el uso del aparato. Para todos los casos de exigencia está disponible un SPIN CLEANER SC 1 con longitud del husillo apropiada. Están disponibles las longitudes del husillo de 200, 300, 400, 500, 600 y 800 mm.

8

Denominaciones de las piezas

8.2 Lista de repuestos

Art. N°	Pieza N°	Denominación	Art. N°	Pieza N°	Denominación
		SPIN CLEANER SC 1	50688	S/28	Husillo compl. 500 mm
		Aparato completo* con	50671	S/16	Husillo compl. 600 mm
50657		Long. de husillo 200 mm	50687	S/29	Husillo compl. 800 mm
50658		Long. de husillo 300 mm			Husillo compl.
50659		Long. de husillo 400 mm			compuesto de:
50686		Long. de husillo 500 mm	50662	S/13/1	Husillo 200 mm
50660		Long. de husillo 600 mm	50668	S/14/1	Husillo 300 mm
50685		Long. de husillo 800 mm	50670	S/15/1	Husillo 400 mm
		Piezas de recambio SC 1:	50689	S/28/1	Husillo 500 mm
50673	S/1	Culata (2 piezas)	50672	S/16/1	Husillo 600 mm
50674	S/2	4 Tornillos	50690	S/29/1	Husillo 800 mm
50675	S/3	Palanca accionadora			y además de
50676	S/4	Segmento dentado			(piezas S/17-S/22):
50677	S/5	Tornillo cilíndrico	50663	S/17	Disco volante
50678	S/6	Lazo de mano	50560	S/18	Tuerca hexagonal
50674	S/7	Tornillo	50664	S/19	Manguito de rueda helidoid.
50682	S/7/1	Arandela	50665	S/20	Cojinete de bolas trasero
50513	S/8	Piñón	50666	S/21	Cojinete de bolas delantero
50511	S/9	3 Arandelas tope	50519	S/22	Punta de husillo, nylón
50567	S/10	2 Ejes de cojinete	50569	S/23	Extractor de puntas de nylón*
50566	S/11	Muelle tensor	50524	S/24	Alargo de husillo 100 mm
50680	S/12	Piñón libre compl.	50525	S/25	Alargo de husillo 200 mm
50661	S/13	Husillo compl. 200 mm	50650	S/26	Alargo de husillo 400 mm*
50667	S/14	Husillo compl. 300 mm	50594	S/27	Gancho de suspensión*
50669	S/15	Husillo compl. 400 mm	* sin ilus	tración	

8